Combatting antibiotic resistance with synthetic biology technologies
利用合成生物学技术对抗抗生素耐药性
基本信息
- 批准号:9167953
- 负责人:
- 金额:$ 247.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAntibiotic ResistanceAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceBacterial InfectionsCellsCenters for Disease Control and Prevention (U.S.)Cessation of lifeCharacteristicsClinicClinicalDetectionDiagnosisDiagnosticDiagnostic ProcedureDrug resistanceEngineeringFreeze DryingGeneticGoldGonorrheaHealthHourInfectionMessenger RNAMethodsMicrobeMolecularMolecular ProfilingNeisseria gonorrhoeaeOrganismPaperPerformancePhenotypePopulationPredispositionRNAResistanceRiskSamplingSystemTechniquesTechnologyTestingTimeTreatment FailureWorkbacterial resistancebasecell growthclinically relevantcombatcostdisorder preventiondrug resistant bacteriaeffective therapyinnovationmicroorganismnew technologynovel diagnosticspathogenpreventsensorsolid statesynthetic biology
项目摘要
PROJECT SUMMARY / ABSTRACT
The emergence of antimicrobial resistance is one of the most serious health threats to our entire population.
Infections from resistant bacteria are now too common, and some pathogens have become resistant to
multiple antibiotic classes. The Centers for Disease Control and Prevention (CDC) recently estimated that
drug-resistant bacteria account for more than 2 million illnesses and over 23,000 deaths every year in the U.S.
With rising rates of drug-resistant infections, there is pressing need for new diagnostic methods that can rapidly
determine the most effective therapy for an infection. Unfortunately, the current method for performing
antibiotic susceptibility testing (AST) involves growing microorganisms from clinical samples and determining
their sensitivity to antibiotics through cell growth. This “gold standard” technique is extremely time-consuming
(minimum 48-72 hours) and can result in significant delays in appropriate therapy, prolonged illness, greater
risk of death, inappropriate antibiotic use, and increased spread of resistance. For some infections like
gonorrhea, AST is not even performed in the clinic and instead inferred based on treatment failure. In short, it
is imperative that new strategies are developed to rapidly diagnose and prevent the amplification of drug
resistance. Antibiotic exposure can trigger the expression of a signature set of mRNAs in susceptible microbes
in as rapidly as a few minutes, raising the exciting possibility of using RNA detection – not cell growth – as a
new means for rapid, phenotype-based AST. We will develop innovative RNA sensor technology that
evaluates these molecular signatures within a clinically-relevant, low-cost, and easy-to-use diagnostic platform.
To achieve this, we will use synthetic biology approaches to engineer highly-sensitive genetic sensors of
mRNA. These sensors will be deployed in cell-free expression systems that can be arrayed and freeze-dried
onto low-cost, solid-state substrates like paper. The result will be a new class of antibiotic diagnostics with
ideal performance, storage, and distribution characteristics. The RNA sensor technology will be developed and
validated with high priority bacterial organisms. Notably, we will, for the first time, define RNA signatures of
susceptibility for N. gonorrhoeae, which the CDC recently elevated as a major cause for concern in the U.S.
and for which AST capabilities do not currently existing in the clinical setting. This work will usher in a new
technology for rapidly diagnosing antibiotic resistance, with the potential to transform the management of
today's growing antimicrobial resistance problem.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmad Samir Khalil其他文献
Ahmad Samir Khalil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmad Samir Khalil', 18)}}的其他基金
2023 Synthetic Biology Gordon Research Conference and Gordon Research Seminar
2023年合成生物学戈登研究大会暨戈登研究研讨会
- 批准号:
10753604 - 财政年份:2023
- 资助金额:
$ 247.24万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10503736 - 财政年份:2022
- 资助金额:
$ 247.24万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10642891 - 财政年份:2022
- 资助金额:
$ 247.24万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10380832 - 财政年份:2020
- 资助金额:
$ 247.24万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10584605 - 财政年份:2020
- 资助金额:
$ 247.24万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10153781 - 财政年份:2020
- 资助金额:
$ 247.24万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
9925776 - 财政年份:2019
- 资助金额:
$ 247.24万 - 项目类别:
ePACE: automation platforms for adaptable and scalable continuous evolution of biomolecules with therapeutic potential
ePACE:自动化平台,用于具有治疗潜力的生物分子的适应性和可扩展的持续进化
- 批准号:
10734591 - 财政年份:2019
- 资助金额:
$ 247.24万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10113365 - 财政年份:2019
- 资助金额:
$ 247.24万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10391333 - 财政年份:2019
- 资助金额:
$ 247.24万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 247.24万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 247.24万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 247.24万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 247.24万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 247.24万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 247.24万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 247.24万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 247.24万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 247.24万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 247.24万 - 项目类别: