Understanding the surfaces of fast charging battery materials: SURF-FAST

了解快速充电电池材料的表面:SURF-FAST

基本信息

  • 批准号:
    10060998
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    已结题

项目摘要

At Nyobolt, we are working on creating an ultra-fast charging lithium-ion battery that can be used in both electric vehicles and consumer goods applications, minimizing downtime by shortening the recharging period, and reframing customer's expectations about where and how we can use batteries.Developed at the University of Cambridge, Nyobolt's ultra-fast charging technology uses niobium tungsten oxides (NWO) as battery anode materials. Conventional lithium-ion materials typically contain graphite or lithium titanate (LTO) as anodes and suffer from both safety and performance issues, the latter due in part to their inherently slow lithium ion movement throughout the material. In contrast, NWOs enable lithium ions to move rapidly though their structures - with ion diffusion coefficients that are several orders of magnitude higher than those in e.g., LTO. This is the key to their ability to be used for a quicker charge and higher power in a battery. What's more, these high ion mobilities can be achieved without nanosizing. This has a significant impact on sustainability - we can avoid the complexity and cost of nanoparticles without compromising on the performance. Prof. Clare Grey and Dr Sai Shivareddy founded Nyobolt Limited in 2019 to bring this UK IP to market and offer a fast-charging solution to customers.In a battery cell, these anodes (which are themselves a composite material) will be paired with a typical cathode electrode and combined with a separator soaked in an electrolyte solution. The interaction of all these components and the resulting changes to the various surfaces present can have a significant impact on the performance of the battery during its operation. Small changes in the chemistry and cycling conditions can have a big influence on key performance indicators, such as lifetime, rate-performance, and capacity retention. These will also impact the overall safety of the cell.This project seeks to study these changes to the surface using techniques at the National Physical Laboratory which provide both sufficient sensitivity and complementary information (e.g. SIMS, Raman, XPS), which are not currently readily available in routine R&D work programs at Nyobolt.By understanding the surface, we can tailor solutions by changing the battery chemistry or electrochemical conditions during cycling to target improved performance, creating a better product to out-compete current state-of-the-art technology. A better fast-charging battery can enable the wider and faster adoption of electric vehicles in UK and electrification more generally and contribute to the UK's net-zero strategy.
在 Nyobolt,我们正在致力于创造一种可用于电动汽车和消费品应用的超快速充电锂离子电池,通过缩短充电周期来最大限度地减少停机时间,并重新定义客户对电池使用地点和方式的期望。Nyobolt 的超快速充电技术由剑桥大学开发,使用铌钨氧化物 (NWO) 作为电池阳极 材料。传统的锂离子材料通常包含石墨或钛酸锂(LTO)作为阳极,并且存在安全和性能问题,后者部分归因于它们固有的缓慢的锂离子在整个材料中的移动。相比之下,NWO 使锂离子能够在其结构中快速移动,其离子扩散系数比 LTO 等材料高几个数量级。这是它们能够用于更快充电和更高功率电池的关键。更重要的是,这些高离子迁移率无需纳米尺寸即可实现。这对可持续性具有重大影响——我们可以在不影响性能的情况下避免纳米颗粒的复杂性和成本。 Clare Gray 教授和 Sai Shivareddy 博士于 2019 年创立了 Nyobolt Limited,将这一英国 IP 推向市场,并为客户提供快速充电解决方案。在电池中,这些阳极(本身就是复合材料)将与典型的阴极电极配对,并与浸泡在电解质溶液中的隔膜结合在一起。所有这些组件的相互作用以及由此产生的各种表面的变化可能会对电池在运行过程中的性能产生重大影响。化学和循环条件的微小变化可能会对关键性能指标产生很大影响,例如寿命、倍率性能和容量保持率。这些也将影响电池的整体安全性。该项目旨在利用国家物理实验室的技术来研究表面的这些变化,这些技术提供了足够的灵敏度和补充信息(例如 SIMS、拉曼、XPS),而这些信息目前在 Nyobolt 的常规研发工作项目中还不容易获得。通过了解表面,我们可以通过改变循环过程中的电池化学或电化学条件来定制解决方案,以提高性能,创造更好的性能。 产品超越当前最先进的技术。更好的快速充电电池可以使英国更广泛、更快地采用电动汽车,并更普遍地实现电气化,并为英国的净零排放战略做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship

相似国自然基金

微阵列技术表面修饰Sapeptide膜结构支架诱导神经干细胞定向迁徙的研究
  • 批准号:
    30901511
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cold Spray Technology for Fast SARS-CoV-2 Disinfection on Public Surfaces: A Major Disruption in the COVID-19 Transmission Chain
用于公共表面快速 SARS-CoV-2 消毒的冷喷雾技术:COVID-19 传播链的重大破坏
  • 批准号:
    555084-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Alliance Grants
Fast, Atomic-Scale Investigation of Assembly and Reaction at Surfaces
表面组装和反应的快速原子级研究
  • 批准号:
    RTI-2020-00708
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Tools and Instruments
CHS: Medium: Collaborative Research: Fast Photorealistic Computer Graphics Rendering of Non-Smooth Surfaces
CHS:媒介:协作研究:非光滑表面的快速真实感计算机图形渲染
  • 批准号:
    1704540
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Fast Photorealistic Computer Graphics Rendering of Non-Smooth Surfaces
CHS:媒介:协作研究:非光滑表面的快速真实感计算机图形渲染
  • 批准号:
    1703957
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grants
Fast reaction chemistry of plasmas in liquids interacting with surfaces
液体中等离子体与表面相互作用的快速反应化学
  • 批准号:
    316898868
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grants
Magnetically-Assisted Laser-Induced Plasma Micro-Machining for Flexible and Fast Texturing of Functional Surfaces
用于功能表面灵活快速纹理化的磁辅助激光诱导等离子体微加工
  • 批准号:
    1563244
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Real-space investigation of surface reactions of organic adsorbates on silicon surfaces using a combination of fast laser heating and scanning tunneling microscopy
使用快速激光加热和扫描隧道显微镜相结合对硅表面有机吸附物的表面反应进行实空间研究
  • 批准号:
    285729788
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grants
Addressing Unsolved Questions on Weathering of Surfaces in Space by Fast Solar Particles
解决快速太阳粒子对太空表面风化的未解决问题
  • 批准号:
    1413380
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Fast production of superhydrophobic surfaces
快速生产超疏水表面
  • 批准号:
    416028-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.24万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了