Fast, Atomic-Scale Investigation of Assembly and Reaction at Surfaces

表面组装和反应的快速原子级研究

基本信息

  • 批准号:
    RTI-2020-00708
  • 负责人:
  • 金额:
    $ 8.98万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The development of new technologies depends critically on the ability to control materials properties in new and exciting ways. Modern trends towards miniaturization and efficiency, as well as (for example) emerging societal demands for clean energy and efficient energy storage, have revealed the need for new materials that can enable next-generation technologies with improved performance. A promising solution to this demand for smaller devices is to shift to a “bottom-up” perspective, where molecular building blocks are assembled into functional nanostructured materials. A significant advantage of this approach is that the smallest feature size that can be obtained depends mainly on the size of the building blocks. Advancing these bottom-up methods requires an improved understanding of the interactions driving the organization of the molecular components, which falls within the field of supramolecular chemistry and more recently, “on-surface reactions”. ***The scanning tunnelling microscope (STM) can acquire images of individual molecules adsorbed on a conducting surface, making it an invaluable tool to investigate molecular organization and reaction. Combining STM with other surface analysis tools, the NanoFemtoLab has obtained essential insights into molecular interactions and on-surface reactions, and in particular recently synthesized 2D conjugated polymers, also termed “organic analogues of graphene”, of record-breaking order and domain size. To extend this cutting-edge research, we propose to tailor the electronic properties of these well-ordered 2D polymers by combining multiple building blocks. In parallel, to move this work towards application, we are studying the transfer of these polymers to semiconductors to enable their incorporation in electronic devices. ***The motivation for this proposal is to acquire key equipment that will allow us to undertake a systematic investigation of structure/property relationships in 2D polymers. First of all, to carry out these time-sensitive projects, we urgently require a replacement for failed components of a fifteen year old STM that is a crucial part of our research infrastructure. In addition to this crucial repair, we seek to upgrade this system to perform “Video-STM” (up to 100 Hz), unique in Canada, that would be capable of studying rapid processes at surfaces such as diffusion, self-assembly and reactions with the exceptional spatial resolution of STM. Specifically, we propose to investigate the dynamics of surface-polymerization by imaging the precursors, intermediates and products throughout the reaction. **
新技术的发展关键取决于以新的和令人兴奋的方式控制材料性能的能力。小型化和效率的现代趋势,以及(例如)对清洁能源和高效能源存储的新兴社会需求,揭示了对新材料的需求,这些新材料可以使下一代技术具有更高的性能。一个有希望的解决方案,这种需求的更小的设备是转移到一个“自下而上”的角度来看,分子积木组装成功能性纳米结构材料。这种方法的一个显着优点是,可以获得的最小特征尺寸主要取决于构建块的尺寸。推进这些自下而上的方法需要更好地理解的相互作用驱动的组织的分子组分,这福尔斯属于超分子化学领域,最近,“表面反应”。* 扫描隧道显微镜(STM)可以获取吸附在导电表面上的单个分子的图像,使其成为研究分子组织和反应的宝贵工具。结合STM与其他表面分析工具,NanoFemtoLab已经获得了分子相互作用和表面反应的基本见解,特别是最近合成的2D共轭聚合物,也称为“石墨烯的有机类似物”,具有破纪录的顺序和域大小。为了扩展这一前沿研究,我们建议通过组合多个构建块来定制这些有序的2D聚合物的电子特性。与此同时,为了将这项工作推向应用,我们正在研究将这些聚合物转移到半导体中,使其能够用于电子设备。* 该提案的动机是获得关键设备,使我们能够对2D聚合物的结构/性能关系进行系统研究。首先,为了实施这些时间敏感的项目,我们迫切需要更换一个15年前的STM的故障组件,这是我们研究基础设施的重要组成部分。除了这个重要的修复,我们试图升级这个系统,以执行“视频STM”(高达100赫兹),在加拿大是独一无二的,这将是能够研究快速过程的表面,如扩散,自组装和反应与STM的特殊空间分辨率。具体来说,我们建议调查的动态表面聚合的前体,中间体和产品在整个反应的成像。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosei, Federico其他文献

Eco-friendly quantum dots for liquid luminescent solar concentrators
  • DOI:
    10.1039/c9ta09586a
  • 发表时间:
    2020-01-28
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Liu, Xin;Luo, Bing;Rosei, Federico
  • 通讯作者:
    Rosei, Federico
Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material
  • DOI:
    10.1016/j.nanoen.2019.05.084
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Benetti, Daniele;Jokar, Efat;Rosei, Federico
  • 通讯作者:
    Rosei, Federico
High performance BiFeO3 ferroelectric nanostructured photocathodes
  • DOI:
    10.1063/5.0013192
  • 发表时间:
    2020-08-28
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Das, Shyamashis;Fourmont, Paul;Rosei, Federico
  • 通讯作者:
    Rosei, Federico
The critical role of water in spider silk and its consequence for protein mechanics
  • DOI:
    10.1039/c1nr10502g
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Brown, Cameron P.;MacLeod, Jennifer;Rosei, Federico
  • 通讯作者:
    Rosei, Federico
Ultrafast Microwave Hydrothermal Synthesis of BiFeO3 Nanoplates

Rosei, Federico的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rosei, Federico', 18)}}的其他基金

Multifunctional materials: structure and properties
多功能材料:结构与性能
  • 批准号:
    RGPIN-2018-05485
  • 财政年份:
    2022
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured Materials
纳米结构材料
  • 批准号:
    CRC-2015-00251
  • 财政年份:
    2022
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Canada Research Chairs
Development of high power photoactive Erbium and Erbium-Ytterbium doped fibers for ultra-fast satellite telecommunications
开发用于超快卫星通信的高功率光敏掺铒和铒掺镱光纤
  • 批准号:
    561014-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Alliance Grants
Multifunctional materials: structure and properties
多功能材料:结构与性能
  • 批准号:
    RGPIN-2018-05485
  • 财政年份:
    2021
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Discovery Grants Program - Individual
Tandem luminescent solar concentrators based on rare earth doped SiAlON and quantum dot thin films
基于稀土掺杂 SiAlON 和量子点薄膜的串联发光太阳能聚光器
  • 批准号:
    567194-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Alliance Grants
Nanostructured Materials
纳米结构材料
  • 批准号:
    CRC-2015-00251
  • 财政年份:
    2021
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Canada Research Chairs
Plasmonic optical biosensor for COVID-19 detection
用于检测 COVID-19 的等离激元光学生物传感器
  • 批准号:
    555353-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Alliance Grants
Photoelectrochemical biosensing for COVID-19: virus and antibodies
COVID-19 的光电化学生物传感:病毒和抗体
  • 批准号:
    555354-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Alliance Grants
Nanostructured Materials
纳米结构材料
  • 批准号:
    CRC-2015-00251
  • 财政年份:
    2020
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Canada Research Chairs
COVID-19 Prevention: Hybrid Polymer/Photoactive Ceramic Self-Disinfecting Coating
COVID-19 预防:混合聚合物/光敏陶瓷自消毒涂层
  • 批准号:
    552756-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Alliance Grants

相似海外基金

Integrated Tip-Enabled Nanofabrication and Characterisation at Atomic Scale
集成尖端纳米加工和原子级表征
  • 批准号:
    LE240100015
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
  • 批准号:
    DP240100464
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Discovery Projects
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Atomic-scale surface and interface structural analysis of crystal growth process in molten metal
熔融金属中晶体生长过程的原子尺度表面和界面结构分析
  • 批准号:
    23H01850
  • 财政年份:
    2023
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
  • 批准号:
    EP/X012689/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Research Grant
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
  • 批准号:
    EP/X021963/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Fellowship
ElectroProtein - Atomic-scale electrodynamics of protein-liquid interfaces
ElectroProtein - 蛋白质-液体界面的原子级电动力学
  • 批准号:
    EP/X022471/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Fellowship
Atomic-scale design of superlubricity of carbon nanostructures on metallic substrates
金属基底上碳纳米结构超润滑性的原子尺度设计
  • 批准号:
    EP/Y024923/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Fellowship
Nanostencil Lithography for Atomic-Scale Fabrication Scale-Up
用于原子级制造放大的纳米模板光刻
  • 批准号:
    2879454
  • 财政年份:
    2023
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了