Improving cardiovascular image-based phenotyping using emerging methods in artificial intelligence

使用人工智能新兴方法改善基于心血管图像的表型分析

基本信息

  • 批准号:
    10379426
  • 负责人:
  • 金额:
    $ 80.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Summary / Abstract Objective — The goal of this proposal is to develop and optimize novel deep learning (DL) assisted approaches to improve diagnosis and clinical decision-making for congenital heart disease (CHD). This will be achieved by using DL, machine learning (ML), and related methods to extract diagnosis, biometric characterizations, and other information from fetal ultrasound imaging. Notably, this work includes a clinical translational evaluation of these methods in a population-wide imaging collection spanning two decades, tens of thousands of patients, and several clinical centers. Background — Despite clear and numerous benefits to prenatal detection of CHD and an ability for fetal ultrasound to detect over 90% of CHD lesions in theory, in practice the fetal CHD detection rate is closer to 50%. Prior literature suggests a key cause of this startling diagnosis gap is suboptimal acquisition and interpretation of fetal heart images. DL is a novel data science technique that is proving excellent at pattern recognition in images. DL models are a function of the design and tuning of a neural network architecture, and the curation and processing of the image data used to train the network. Preliminary Studies — We have assembled a multidisciplinary team of experts in echocardiography and CHD (Drs. Grady, Levine, and Arnaout), DL and data science (Drs. Keiser, Butte and Arnaout), and statistics and clinical research (Drs. Arnaout and Grady) and secured access to tens of thousands of multicenter (UCSF and six other centers), multimodal fetal imaging studies. We have created a scalable image processing pipeline to transform clinical studies into image data ready for computing. We have designed and trained DL models to find key cardiac views in fetal ultrasound, calculate standard and advanced fetal cardiac biometrics from those views, and distinguish between normal hearts and certain CHD lesions. Hypothesis — While DL is powerful, much work is still needed to adapt it for clinical imaging and to translate it toward clinically relevant performance in patient populations. We hypothesize that an integrated ensemble DL/ML approach can lead to vast improvements in fetal CHD diagnosis. Aims — To this end, the main Aims of this proposal are (1) to develop and optimize neural network architectures and efficient data inputs to relieve key performance bottlenecks for DL in fetal CHD; and (2) to deploy DL models population-wide to evaluate their ability to improve diagnosis, biometric characterization, and precision phenotyping over the current standard of care. Our methods include DL/ML algorithms and retrospective imaging analysis. Environment and Impact — This work will be supported in an outstanding environment for research at the crossroads of data science, cardiovascular and fetal imaging, and translational informatics. The work proposed will provide valuable tools and insight into designing and evaluating both the data and the algorithms for DL on imaging for clinically relevant goals, and will lay important groundwork for DL-assisted phenotyping for both clinical use and precision medicine research.
摘要/摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rima Arnaout其他文献

Rima Arnaout的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rima Arnaout', 18)}}的其他基金

Developing FAIR practices for cloud-enabled AI deployment for prospective testing
为基于云的人工智能部署制定公平实践以进行前瞻性测试
  • 批准号:
    10827803
  • 财政年份:
    2023
  • 资助金额:
    $ 80.89万
  • 项目类别:
ENRICHing NIH Imaging Datasets to Prepare them for Machine Learning
丰富 NIH 成像数据集,为机器学习做好准备
  • 批准号:
    10842910
  • 财政年份:
    2020
  • 资助金额:
    $ 80.89万
  • 项目类别:
Improving cardiovascular image-based phenotyping using emerging methods in artificial intelligence
使用人工智能新兴方法改善基于心血管图像的表型分析
  • 批准号:
    10608075
  • 财政年份:
    2020
  • 资助金额:
    $ 80.89万
  • 项目类别:
Genetics and Structure of Trabecular Myocardium in Development and Disease
发育和疾病中小梁心肌的遗传学和结构
  • 批准号:
    9764455
  • 财政年份:
    2015
  • 资助金额:
    $ 80.89万
  • 项目类别:
Genetics and Structure of Trabecular Myocardium in Development and Disease
发育和疾病中小梁心肌的遗传学和结构
  • 批准号:
    8967119
  • 财政年份:
    2015
  • 资助金额:
    $ 80.89万
  • 项目类别:
Genetic Analyst of Early Conduction System Development
早期传导系统开发的遗传分析
  • 批准号:
    8202805
  • 财政年份:
    2011
  • 资助金额:
    $ 80.89万
  • 项目类别:
Genetic Analyst of Early Conduction System Development
早期传导系统开发的遗传分析
  • 批准号:
    8316460
  • 财政年份:
    2011
  • 资助金额:
    $ 80.89万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.89万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了