Developing FAIR practices for cloud-enabled AI deployment for prospective testing

为基于云的人工智能部署制定公平实践以进行前瞻性测试

基本信息

  • 批准号:
    10827803
  • 负责人:
  • 金额:
    $ 24.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-08 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Supplemental Project Summary Objective — The goal of the parent proposal is to develop and optimize novel deep learning (DL) approaches to improve detection of congenital heart disease (CHD). We are using DL and related methods to extract diagnosis, biometric characterizations, and other information from fetal ultrasound imaging. Notably, this work includes retrospective evaluation in an imaging collection spanning two decades, tens of thousands of patients, and several clinical centers across a range of healthcare settings. Background — Despite clear benefits to prenatal detection of CHD and an ability for fetal ultrasound to detect over 90% of CHD lesions in theory, in practice the fetal CHD detection is closer to 50%. Prior literature suggests a key cause of this startling diagnosis gap is suboptimal acquisition and interpretation of fetal heart images. Preliminary Studies — Our multi-disciplinary team in CHD and data science has successfully used DL to distinguish normal hearts from those with complex CHD with an AUC of 0.99. Further retrospective validation shows our model to be an anomaly detector appropriate for screening and has generated novel insights into study quality and completeness that can improve clinical guidelines. The next logical step is prospective testing with a workflow robust enough for deployment in the community. We have developed clinical feasibility testing partners for cloud deployment, performed technical testing, and secured institutional approvals. Goals of Supplement — Prospective multi-center testing for DL algorithms seems well-suited to cloud deployment. However, determining how best to optimize cloud platforms with researchers, clinicians, and prospective testing in mind is an open question. Whether the cloud can be used to enable integration with, or testing aboard, end-user medical devices (‘edge devices’) is also unclear. Our goal in this supplement is to test these approaches. Aims — (1) to develop a workflow for hosting deep learning models on the cloud (users can send data to the cloud for inference directly from edge devices or via e.g. web application). Importantly, our approach is Findable, Available, Interoperable, and Reusable (FAIR), by leveraging tools offered across cloud service providers; being open-source, well-documented and well-covered by unit tests; being version-controlled and complete (“containerized”); and being user-friendly for biomedical researchers and clinical partners to use and re-use for different DL models. (2) We will perform feasibility testing in community fetal ultrasound clinics. Environment and Impact — This work is supported in an outstanding environment at the crossroads of data science, cardiovascular and fetal imaging, and translational informatics. Our testing partners span healthcare settings and the world, forcing our workflows to be robust. We will publish our workflow, software container, and documentation for the research community, as well as workflow and best practices for bringing the cloud to edge devices. The work proposed will provide valuable tools and insight into how best to use cloud services for rigorous and robust prospective testing of DL algorithms for biomedical imaging.
补充项目摘要 目标-母提案的目标是开发和优化新型深度学习(DL)方法 以提高先天性心脏病(CHD)的检出率。我们正在使用DL和相关方法来提取 诊断、生物特征和来自胎儿超声成像的其他信息。值得注意的是,这项工作 包括回顾性评价的成像收集跨越二十年,成千上万的病人, 以及多个医疗机构的临床中心。背景-尽管有明显的好处, 产前检测CHD和胎儿超声检测CHD病变的能力在理论上超过90%, 实践中胎儿CHD检出率接近50%。先前的文献表明,这一惊人的关键原因 诊断差距是胎儿心脏图像的次优采集和解释。初步研究-我们的 CHD和数据科学领域的多学科团队已成功使用DL区分正常心脏和 复杂CHD患者的AUC为0.99。进一步的回顾性验证表明,我们的模型是一个 异常检测器适用于筛选,并对研究质量产生了新的见解, 完整性,可以改善临床指南。下一个合乎逻辑的步骤是使用工作流进行前瞻性测试 足够强大,可以在社区中部署。我们已经开发了临床可行性测试合作伙伴, 云部署,执行技术测试,并获得机构批准。补充的目的- DL算法的前瞻性多中心测试似乎非常适合云部署。然而,在这方面, 根据研究人员、临床医生和前瞻性测试,确定如何最好地优化云平台 是个悬而未决的问题云是否可用于实现与最终用户的集成或在其上进行测试 医疗设备(“边缘设备”)也不清楚。我们在本补充中的目标是测试这些方法。 目标-(1)开发一个在云上托管深度学习模型的工作流程(用户可以将数据发送到 用于直接从边缘设备或经由例如web应用进行推断的云)。重要的是,我们的方法是 通过利用跨云服务提供的工具,实现可查找、可用、互操作和可重用(FAIR) 提供者;是开源的,有良好的文档记录,并被单元测试覆盖;是版本控制的, 完整(“集装箱化”);便于生物医学研究人员和临床合作伙伴使用, 重复使用不同的DL模型。(2)我们将在社区胎儿超声诊所进行可行性测试。 环境和影响-这项工作是在一个出色的环境在数据的十字路口支持 科学,心血管和胎儿成像,以及翻译信息学。我们的测试合作伙伴涵盖医疗保健领域 环境和世界,迫使我们的工作流程变得强大。我们将发布我们的工作流程,软件容器, 和文档,以及将云计算引入 边缘设备。建议的工作将提供有价值的工具,并深入了解如何最好地使用云服务, 用于生物医学成像的DL算法的严格和稳健的前瞻性测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rima Arnaout其他文献

Rima Arnaout的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rima Arnaout', 18)}}的其他基金

ENRICHing NIH Imaging Datasets to Prepare them for Machine Learning
丰富 NIH 成像数据集,为机器学习做好准备
  • 批准号:
    10842910
  • 财政年份:
    2020
  • 资助金额:
    $ 24.17万
  • 项目类别:
Improving cardiovascular image-based phenotyping using emerging methods in artificial intelligence
使用人工智能新兴方法改善基于心血管图像的表型分析
  • 批准号:
    10379426
  • 财政年份:
    2020
  • 资助金额:
    $ 24.17万
  • 项目类别:
Improving cardiovascular image-based phenotyping using emerging methods in artificial intelligence
使用人工智能新兴方法改善基于心血管图像的表型分析
  • 批准号:
    10608075
  • 财政年份:
    2020
  • 资助金额:
    $ 24.17万
  • 项目类别:
Genetics and Structure of Trabecular Myocardium in Development and Disease
发育和疾病中小梁心肌的遗传学和结构
  • 批准号:
    9764455
  • 财政年份:
    2015
  • 资助金额:
    $ 24.17万
  • 项目类别:
Genetics and Structure of Trabecular Myocardium in Development and Disease
发育和疾病中小梁心肌的遗传学和结构
  • 批准号:
    8967119
  • 财政年份:
    2015
  • 资助金额:
    $ 24.17万
  • 项目类别:
Genetic Analyst of Early Conduction System Development
早期传导系统开发的遗传分析
  • 批准号:
    8202805
  • 财政年份:
    2011
  • 资助金额:
    $ 24.17万
  • 项目类别:
Genetic Analyst of Early Conduction System Development
早期传导系统开发的遗传分析
  • 批准号:
    8316460
  • 财政年份:
    2011
  • 资助金额:
    $ 24.17万
  • 项目类别:

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了