Multi-Modal Fingertip Sensors for Prosthetic Hand Control and Feedback
用于假手控制和反馈的多模式指尖传感器
基本信息
- 批准号:10384800
- 负责人:
- 金额:$ 27.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAlgorithmsAmputationAmputeesBackCalibrationCaringClinicalClinical TrialsCognitiveCollaborationsDevelopmentDevicesDigit structureEconomicsEngineeringEnvironmentEsthesiaFeedbackFingersFocus GroupsFoundationsFreedomFunding OpportunitiesFutureGoalsHandHand functionsHumanIndividualIndustryInterviewLegal patentLife Cycle StagesLimb ProsthesisLimb structureMapsMeasurementMeasuresMechanicsMedicalMethodsModalityMonitorMotivationMotorMyoelectric prosthesisNeeds AssessmentNerveNumbnessOccupational TherapistPatientsPerformancePeripheral NervesPhasePositioning AttributeProcessProsthesisResearchResearch PersonnelSchemeSensorySeriesSignal TransductionSourceSpecific qualifier valueSystemTactileTechniquesTechnologyTest ResultTestingTimeTouch sensationUnited StatesUpper ExtremityVolitionWorkalgorithm developmentcognitive loadcommercializationcomparative efficacydesigndexterityexperiencegrasphand graspimprovedinnovationlimb amputationmultimodalitymyoelectric controlpersonalized approachprosthesis controlprosthesis wearerprosthetic handpsychosocialrelating to nervous systemrestorationsensorsomatosensorysoundsuccessteleoperationvisual-vestibular
项目摘要
Multi-Modal Fingertip Sensors for Prosthetic Hand
Control and Feedback
PROJECT SUMMARY / ABSTRACT
The goal of the proposed project is to develop a robust, multi-modal prosthetic fingertip sensor – the Point Touch
– which 1) has a patented multi-modal sensing capability including measurement of proximity, contact, and force
and 2) can augment myoelectric control methods using semi-autonomous control algorithms. The Point Touch
is the next product in Point Designs’ product road map, which began with the Point Digit, a full finger mechanical
prosthesis. Since the commercial launch of the Point Digit in 2017, over 1200 digits have been delivered to more
than 470 patients. Through our extensive academic and commercial research collaborations we uncovered an
opportunity to utilize our multi-modal prosthetic fingertip sensor to improve myoelectric
control of prosthetic hands. To answer the frequent request for a fingertip sensor, we will complete the
development of the Point Touch through this funding opportunity. Completion of this project will result in a
multi-modal fingertip sensor specifically designed to augment existing myoelectric control methods and lay a
foundation to restore the sense of touch.
The care of people with upper limb amputations requires a highly individualized approach. Prosthetists and
occupational therapists work with each patient to provide a personalized medical solution using whatever
components and technologies are available on the open market. Very often, the bottleneck in this system is the
availability of clinically sound prosthetic components that can be readily sourced by the prosthetists to provide
an optimal prosthetic limb system.
Today, prosthetic hands are numb. They provide no somatosensory feedback to the user. However, we know
that the sensory information provided by the hand is critical to our dexterous capabilities. Many research groups
have made great progress in the development of peripheral nerve interfaces and have begun several in-human
trials around the world. However, current commercial prosthetic hands cannot measure the interactions with
the unconstrained external environment; there are short- and long-term clinical needs for commercially viable
prosthetic fingertips.
In this Phase 1 effort we propose to 1) perform a User Needs assessment followed by verification through
mechanical tests, and 2) enhance existing myoelectric control techniques using the innovative proximity and
force sensing capabilities of the Point Touch. This short-term implementation of the Point Touch technology
will improve myoelectric control techniques and reduce cognitive burden for users of prosthetic hands. The
Phase 1 effort will build towards a larger Phase II project which will test the Point Touch and its algorithmic
capabilities in a clinical trial of patients with peripheral nerve interfaces. Combined, these efforts will establish
the Point Touch as the leading candidate of prosthetic finger technology to be ready for the commercialization of
peripheral nerve interfaces and the restoration of the sense of touch.
用于假手的多模指尖传感器
控制和反馈
项目摘要/摘要
该项目的目标是开发一种健壮的、多模式假肢指尖传感器--点触
-哪1)拥有专利的多模式传感功能,包括测量接近、接触和力
以及2)可以使用半自主控制算法来增强肌电控制方法。点点触控
是Point Designs产品路线图中的下一款产品,该路线图始于Point Digit,一种全手指机械
假肢。自2017年Point Digit商业推出以来,已有超过1200个数字交付给更多
超过470名患者。通过我们广泛的学术和商业研究合作,我们发现了
利用我们的多模式假肢指尖传感器改善肌电的机会
假手的控制。为了回答经常出现的指尖传感器的需求,我们将完成
通过这一融资机会开发Point Touch。该项目的完成将导致
多模式指尖传感器专为增强现有肌电控制方法而设计,并奠定了
恢复触觉的基础。
上肢截肢患者的护理需要高度个性化的方法。修复师和
职业治疗师与每个患者合作,使用任何工具提供个性化的医疗解决方案
组件和技术在公开市场上都可以买到。通常,该系统中的瓶颈是
临床上良好的假体部件的可用性,这些部件可以很容易地由修复师提供
一种最佳的假肢系统。
如今,假手已经麻木了。它们不向用户提供体感反馈。然而,我们知道
手提供的感觉信息对我们的灵巧能力至关重要。许多研究小组
在周围神经接口的发展方面取得了很大进展,并开始了几个人体内
世界各地的审判。然而,目前的商业假手不能测量与
不受约束的外部环境;有商业可行性的短期和长期临床需求
假肢指尖。
在此阶段1的工作中,我们建议1)执行用户需求评估,然后通过
机械测试,以及2)使用创新的邻近性和
Point Touch的力感测功能。这是点触技术的短期实施
将改进肌电控制技术,减轻假手使用者的认知负担。这个
第一阶段的工作将朝着更大的第二阶段项目发展,该项目将测试Point Touch及其算法
在周围神经接口患者的临床试验中的能力。综合起来,这些努力将建立
点触作为假指技术的领先候选者,为假指的商业化做好准备
周围神经接口和触觉的恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Segil其他文献
Jacob Segil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Segil', 18)}}的其他基金
Investigation of Embodiment for Upper Limb Amputees
上肢截肢者的躯体化研究
- 批准号:
10709524 - 财政年份:2020
- 资助金额:
$ 27.68万 - 项目类别:
Investigation of Embodiment for Upper Limb Amputees
上肢截肢者的躯体化研究
- 批准号:
10290316 - 财政年份:2020
- 资助金额:
$ 27.68万 - 项目类别:
Investigation of Embodiment for Upper Limb Amputees
上肢截肢者的躯体化研究
- 批准号:
10490285 - 财政年份:2020
- 资助金额:
$ 27.68万 - 项目类别:
Integration of a Sensory Feedback Implant with Myoelectric Prosthetic Hands
感觉反馈植入物与肌电假手的集成
- 批准号:
9194230 - 财政年份:2017
- 资助金额:
$ 27.68万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant