Modeling Transition Metal Ion Binding to Proteins
模拟过渡金属离子与蛋白质的结合
基本信息
- 批准号:10387132
- 负责人:
- 金额:$ 20.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAtomic Force MicroscopyBindingBiologicalBiological ProcessBiologyBiophysicsCommunitiesComplexComputer ModelsDevelopmentDissociationDrug InteractionsGoalsHealthHomeostasisInfectionIonsLigandsMetal Binding SiteMetal Ion BindingMetalloproteinsMetalsMethodologyModelingMolecularNutritional ImmunityPlayProteinsRoleSiteStructural ModelsStructureThermodynamicsTransition Elementsaqueousbaseinsightmetalloenzymenext generationpathogensimulationsingle moleculesuccess
项目摘要
Project Summary/Abstract
Transition metal (TM) ions play myriad roles in biology and are present in >30% of structures in the PDB yet
the accurate computational modeling of these ions is less evolved than for the “organic” framework of proteins.
Hence, the simulation of metalloprotein structure, function and dynamics is lagging behind related studies on
proteins that do not contain structural or functional TM ions. To address this issue a Balkanized approach has
been taken over the last several decades where multiple groups have built models validated based on varying
criteria with many being unavailable or only available in specific packages further making it difficult to focus
best practices. Because of this gap in the modeling of TM ions important biological problems associated with
TM ion homeostasis, metal center assembly, TM/drug interactions, dynamics of ligand association and product
dissociation in metalloenzymes, attacking pathogens using nutritional immunity via TM sequestration near
infection sites, etc. are a significant challenge to address. Through the development of robust computational
models of TMs these problems, amongst others, focused on metal ion biology will become as addressable as
is currently possible for biological molecules lacking TM ions.
Our over-arching goal is to develop validated classical force field models that are readily available that can
routinely and accurately model the structure and thermodynamics of TMs bound to proteins and in aqueous
solution in order to address critical biological questions involving metal ions. Our long-term goal is to
incorporate a range of extant TM modeling approaches into AMBER and to then validate and disseminate the
various methodologies for our own use and for that of the community. Moreover, in this proposal we will apply
our validated models to simulate TM binding at model and at protein metal binding sites, explore aspects of TM
ion homeostasis (TMIH) and provide molecular-level insights into Atomic Force Microscopy (AFM) single-
molecule studies on metalloproteins. The fundamental overarching biophysical question we are addressing is:
what is required to accurately and routinely model TMs and what are the molecular-level details of metal ion
complexation in proteins. Building on our success with developing class-leading bonded metal ion force fields
we will create next generation models (with a strong focus on nonbonded representations) that can be
exploited in understanding the critical role of TMs in biological processes.
项目总结/摘要
过渡金属(TM)离子在生物学中起着无数的作用,并且在PDB中存在于>30%的结构中
这些离子的精确计算模型比蛋白质的“有机”框架的精确计算模型发展得更少。
因此,对金属蛋白结构、功能和动力学的模拟相对滞后,
不含结构或功能性TM离子的蛋白质。为了解决这个问题,
在过去的几十年里,多个小组已经建立了基于不同的
许多标准不可用或仅在特定包中可用,这进一步使得难以集中注意力
最佳实践由于TM离子建模中的这一差距,与TM离子相关的重要生物学问题变得更加复杂。
TM离子稳态,金属中心组装,TM/药物相互作用,配体缔合动力学和产物
金属酶的解离,通过TM隔离利用营养免疫攻击病原体,
感染部位等是需要解决的重大挑战。通过开发强大的计算
这些问题,除其他外,集中在金属离子生物学将成为可解决的,
是目前可能的生物分子缺乏TM离子。
我们的首要目标是开发经过验证的经典力场模型,这些模型可以随时获得,
常规和准确地模拟与蛋白质结合的TM的结构和热力学,
解决方案,以解决涉及金属离子的关键生物学问题。我们的长期目标是
将一系列现有的TM建模方法纳入AMBER,然后验证和传播
各种方法供我们自己和社区使用。此外,在本提案中,我们将适用
我们验证的模型,以模拟TM结合在模型和蛋白质金属结合位点,探索方面的TM
离子稳态(TMIH),并提供分子水平的见解,原子力显微镜(AFM)单,
金属蛋白的分子研究。我们正在解决的基本的首要生物物理问题是:
精确和常规地建模TM需要什么?金属离子的分子水平细节是什么?
蛋白质中的络合作用。在我们成功的基础上,开发一流的键合金属离子力场
我们将创建下一代模型(重点关注非绑定表示),
在理解TM在生物过程中的关键作用中被利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hasan Metin Aktulga其他文献
The ReaxFF reactive force-field: development, applications and future directions
ReaxFF 反应力场:发展、应用和未来方向
- DOI:
10.1038/npjcompumats.2015.11 - 发表时间:
2016-03-04 - 期刊:
- 影响因子:11.900
- 作者:
Thomas P Senftle;Sungwook Hong;Md Mahbubul Islam;Sudhir B Kylasa;Yuanxia Zheng;Yun Kyung Shin;Chad Junkermeier;Roman Engel-Herbert;Michael J Janik;Hasan Metin Aktulga;Toon Verstraelen;Ananth Grama;Adri C T van Duin - 通讯作者:
Adri C T van Duin
Hasan Metin Aktulga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hasan Metin Aktulga', 18)}}的其他基金
Modeling Transition Metal Ion Binding to Proteins
模拟过渡金属离子与蛋白质的结合
- 批准号:
9816856 - 财政年份:2019
- 资助金额:
$ 20.99万 - 项目类别:
Modeling Transition Metal Ion Binding to Proteins
模拟过渡金属离子与蛋白质的结合
- 批准号:
10206191 - 财政年份:2019
- 资助金额:
$ 20.99万 - 项目类别:
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Research Grant
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
- 批准号:
23K04579 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
- 批准号:
DP230100637 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Discovery Projects
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
- 批准号:
22KJ1464 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
- 批准号:
2887441 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Studentship