Hardening Software for Rule-based models-Competitive Revision
基于规则的模型的强化软件 - 竞争性修订
基本信息
- 批准号:10382135
- 负责人:
- 金额:$ 6.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAdvanced DevelopmentAlgorithmsAreaAutomobile DrivingAwarenessBayesian AnalysisBehaviorBiological ModelsCOVID-19COVID-19 pandemicChemicalsCitiesCollaborationsComplementComputer softwareContact TracingDataDerivation procedureDetectionDevelopmentDifferential EquationDiseaseE-learningEpidemiologyEventEvolutionFormulationGoalsHeterogeneityImmunityImmunologic MemoryIncidenceIndividualInfectionLaboratoriesLanguageLikelihood FunctionsMarkov ChainsMarkov chain Monte Carlo methodologyMeasuresMembraneMethodsModelingMonitorOccupationsPatternPerformancePersonsPhosphorylationPopulationPropertyPublishingPythonsQuarantineResearch Project GrantsSARS-CoV-2 transmissionSARS-CoV-2 variantSamplingSignal TransductionSiteSocial DistanceSpecific qualifier valueStructural ModelsStudy modelsSymptomsSystemSystems BiologyTestingTimeTrainingUncertaintyUnited StatesUpdateVaccinationVaccinesVariantVirus SheddingWorkWritingbasecomputer clustercomputing resourcescostcurve fittingdata streamsdesignepidemiological modelimprovedmathematical modelmetropolitanoperationparallel computerparticlepopulation basedpredictive modelingreceptorrecruitresponsesevere COVID-19simulationsimulation softwaresocioeconomicssoftware developmenttooltransmission processvaccine developmentvaccine-induced immunity
项目摘要
PROJECT SUMMARY/ABSTRACT
In this competitive revision application, we are proposing to expand the scope of Research Project
2R01GM111510-05 by adding a new sub-aim to Specific Aim 3. As originally formulated, the goal of Aim 3 was
to apply new features of PyBioNetFit (PyBNF) in modeling studies of immunoreceptor signaling. This activity
now becomes Aim 3a. The new sub-aim, Aim 3b, will be focused on data-driven modeling of the effects of vac-
cination and immunity-evading SARS-CoV-2. The modeling of Aim 3b will complement Aims 1 and 2 by driving
improvements of PyBNF that will be broadly useful for epidemiological modelers. Aim 3b addresses a need for
situational awareness, i.e., an ability to monitor for signs of new surges in incidence of severe COVID-19. Aim
3b also addresses a need to monitor for waning of natural and vaccine-induced immunity and emergence of
new strains of SARS-CoV-2 that are capable of evading vaccine-induced immunity. This work will extend our
recently published COVID-19 forecasting efforts in which we used mathematical models for region-specific
COVID-19 epidemics to make accurate short-term predictions of COVID-19 case detection. In this work, we
focused on making predictions for metropolitan areas, which are defined on the basis of socioeconomic coher-
ence. We have found that metropolitan areas are more uniformly impacted by COVID-19 than states. Most
forecasting to date has focused on making state-level predictions vs. predictions for cities and their sur-
rounding metropolitan areas. We plan to extend our existing models to account for vaccination in the 15
most populous metropolitan statistical areas (MSAs) in the United States. After new versions of these region-
specific models are formulated, we will begin to update model parameterizations daily using Bayesian infer-
ence. Daily updates are important for maintaining prediction accuracy and for modifying the models to account
for changes in social-distancing behaviors. Our daily inferences will include quantification of forecast uncertain-
ties, so as to allow for detection of surges and confident rapid responses. The model structure that we are us-
ing as the basis for our forecasts is a deterministic compartmental model that extends the classic SEIR model,
which consists of four ordinary differential equations (ODEs) for the dynamics of susceptible (S), exposed (E),
infected (I), and removed (R) populations. Our extended model accounts for a) the variable time from infection
to onset of symptoms, which is non-exponentially distributed; b) shedding of virus by asymptomatic individuals;
c) mild and severe forms of symptomatic disease; d) quarantine driven by testing and contact tracing; and e)
widespread implementation of time-varying social-distancing measures. Here, we are proposing to extend the
model further to account for vaccination, including vaccines that require booster shots and the time required for
development of vaccine-induced immunity. We will also develop models in which persons with immunity be-
come susceptible gradually over time to currently circulating variants of SARS-CoV-2 and models that account
for emergence of immunity-evading variants.
项目总结/摘要
在此竞争性修订申请中,我们建议扩大研究项目的范围
2 R 01 GM 111510 -05,在具体目标3中增加新的子目标。按照最初的表述,目标3的目标是
将PyBioNetFit(PyBNF)的新功能应用于免疫受体信号传导的建模研究。这项活动
现在变成了目标3a。新的子目标目标3b将侧重于对真空吸尘器的影响进行数据驱动的建模,
免疫逃避SARS-CoV-2。目标3b的建模将补充目标1和目标2,
PyBNF的改进将广泛适用于流行病学建模者。目标3b涉及以下需要:
态势感知,即,监测严重COVID-19发病率新激增迹象的能力。目的
3b还解决了监测天然和疫苗诱导的免疫力的减弱以及
新的SARS-CoV-2菌株能够逃避疫苗诱导的免疫力。这项工作将扩大我们的
最近发表的COVID-19预测工作,我们使用数学模型对特定地区进行预测,
COVID-19疫情,以便对COVID-19病例检测做出准确的短期预测。本工作
专注于对大都市地区进行预测,这些地区是根据社会经济联系定义的,
恩塞。我们发现,大都市地区比各州更均匀地受到COVID-19的影响。最
到目前为止,预测的重点是进行州一级的预测,而不是对城市及其周边地区的预测。
环绕着大都市我们计划扩展现有的模型,以考虑到15个国家的疫苗接种情况。
美国人口最多的大都市统计区(MSAs)。在这些地区的新版本之后-
制定具体的模型,我们将开始每天使用贝叶斯推断更新模型参数化-
恩塞。每日更新对于保持预测准确性和修改模型以考虑
社交距离行为的改变。我们的日常推理将包括预测不确定性的量化-
联系,以便能够检测激增和有信心的快速反应。我们就是我们的模型结构-
作为我们预测的基础是一个确定性的房室模型,它扩展了经典的SEIR模型,
它由四个常微分方程(ODE)组成,分别用于敏感(S),暴露(E),
感染的(I)和去除的(R)群体。我们的扩展模型考虑了a)从感染开始的可变时间
至症状发作,其为非指数分布; B)无症状个体的病毒脱落;
c)轻微和严重形式的有症状疾病; d)通过检测和接触者追踪进行检疫;以及e)
广泛实施随时间变化的社交距离措施。在此,我们建议延长
模型进一步考虑疫苗接种,包括需要加强注射的疫苗和接种所需的时间。
疫苗诱导免疫的发展。我们还将开发模型,使具有免疫力的人-
随着时间的推移,逐渐容易受到目前流行的SARS-CoV-2变体和模型的影响,
免疫逃避变异体的出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William S Hlavacek其他文献
William S Hlavacek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William S Hlavacek', 18)}}的其他基金
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10399590 - 财政年份:2021
- 资助金额:
$ 6.42万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 6.42万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 6.42万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10337242 - 财政年份:2020
- 资助金额:
$ 6.42万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9547104 - 财政年份:2017
- 资助金额:
$ 6.42万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9769647 - 财政年份:2017
- 资助金额:
$ 6.42万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9139424 - 财政年份:2015
- 资助金额:
$ 6.42万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Research Grant














{{item.name}}会员




