Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
基本信息
- 批准号:9769647
- 负责人:
- 金额:$ 45.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAllyApoptosisAutophagocytosisBiologicalBiological ProcessBiologyCancer cell lineCell Cycle KineticsCell DeathCell LineCell SurvivalCellsCellular biologyCessation of lifeComplexComputational algorithmComputer SimulationComputersDataData SetDevicesDigestionDrug resistanceEngineeringEquilibriumFoundationsGeneticGoalsHypoxiaIndividualInterdisciplinary StudyInterventionKRAS2 geneKineticsLaboratoriesLinkLipidsMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresMediatingModelingMolecularMolecular TargetMonte Carlo MethodMutationNon-Small-Cell Lung CarcinomaNuclear FissionNuclear WeaponNutrientOncogenicOutputPathway interactionsPatientsPhenotypePhysicsPhysiologicalPlayProcessProteinsPublic HealthRNA InterferenceReactionRecyclingResearchResearch PersonnelResearch Project GrantsResolutionRoleScientistSignal TransductionSiteSpecific qualifier valueStarvationStressStructural ModelsSystemTestingTherapeuticTreatment EfficacyWarWorld War IIassaultbasecancer cellcell behaviordesigndrug developmentenvironmental stressorgenetic predictorsimprovedinhibition of autophagyinhibitor/antagonistinnovationmodels and simulationmutantnovelpredictive modelingprogramspublic health relevanceresponsestressortherapeutic evaluationtherapeutic targettooltumor progressionweapons
项目摘要
DESCRIPTION (provided by applicant): Autophagy is a complex intracellular recycling program associated with tumor progression and cancer cell survival. Researchers still lack strategies to effectively target this process, and an understanding of when to apply such strategies. Oncogenic stress, such as that elicited by mutant KRAS, can activate autophagy to promote cancer cell survival. Importantly, KRAS mutations are linked to 40% of lung cancer deaths in the U.S. each year. Therefore, we propose an innovative, multidisciplinary research project that investigates autophagy in connection with KRAS: we will integrate predictive computational modeling and high-quality cell-based measurements to accurately model the autophagic process in KRAS-driven lung cancer. We anticipate that our model will help identify the most effective therapeutic strategies for targeting autophagy in cancer. Specific Aim #1: Validate a mechanistic model of the core autophagy pathway to predict targets for the effective inhibition of autophagy. We have specified a mechanistic model through "rules" that capture the key biological processes comprising the autophagy pathway. To validate this model, we measured how the individual steps of autophagy respond to physiological and oncogenic stressors, and systematic RNAi perturbations. Here, we propose to tune the model to align with quantitative data, and test predictions of the rate-limiting steps. This framework will explore the
possibility that autophagy is controlled by a bistable switch, an intriguing model-derived hypothesis with therapeutic relevance. As part of this aim, we will identify effective autophagy inhibitors in wildtype and mutant KRAS backgrounds. Specific Aim #2: Model the relationship of autophagy and cell fate to test therapeutic predictions for KRAS-driven lung cancer. The autophagy model will be extended to investigate the relationship between autophagic flux and cell survival and death. For this effort, we will implement an innovative data-driven approach, which involves defining relationships between measured inputs (signaling readouts) and outputs (autophagic flux, survival, and death) in datasets. We will use this model and patient-derived cell
lines to predict the therapeutic benefit of inhibiting autophagy in KRAS-driven lung cancer. Our collaborative research brings mechanistic modeling and cell biology experts together for a project that is highly relevant and valuable to public health. Mechanistic modeling was used by Los Alamos National Laboratory after World War II to assist with complex nuclear fission devices like the atomic bomb. We will use modeling to predict complex cancer cell behavior, with the ultimate goal of contributing a valuable weapon to the "war on cancer."
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Potent and Selective ULK1 Inhibitor Suppresses Autophagy and Sensitizes Cancer Cells to Nutrient Stress.
- DOI:10.1016/j.isci.2018.09.012
- 发表时间:2018-10-26
- 期刊:
- 影响因子:5.8
- 作者:Martin KR;Celano SL;Solitro AR;Gunaydin H;Scott M;O'Hagan RC;Shumway SD;Fuller P;MacKeigan JP
- 通讯作者:MacKeigan JP
PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles.
- DOI:10.1371/journal.pone.0184909
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Merrill NM;Schipper JL;Karnes JB;Kauffman AL;Martin KR;MacKeigan JP
- 通讯作者:MacKeigan JP
Prediction of Optimal Drug Schedules for Controlling Autophagy.
控制自噬的最佳药物方案的预测。
- DOI:10.1038/s41598-019-38763-9
- 发表时间:2019
- 期刊:
- 影响因子:4.6
- 作者:Shirin,Afroza;Klickstein,IsaacS;Feng,Song;Lin,YenTing;Hlavacek,WilliamS;Sorrentino,Francesco
- 通讯作者:Sorrentino,Francesco
Leaving the lysosome behind: novel developments in autophagy inhibition.
将溶酶体留在后面:自噬抑制的新发展。
- DOI:10.4155/fmc.15.166
- 发表时间:2016-01
- 期刊:
- 影响因子:4.2
- 作者:Solitro AR;MacKeigan JP
- 通讯作者:MacKeigan JP
Identification of Kinases Responsible for p53-Dependent Autophagy.
负责 p53 依赖性自噬的激酶的鉴定。
- DOI:10.1016/j.isci.2019.04.023
- 发表时间:2019
- 期刊:
- 影响因子:5.8
- 作者:Celano,StephanieL;Yco,LisetteP;Kortus,MatthewG;Solitro,AbigailR;Gunaydin,Hakan;Scott,Mark;Spooner,Edward;O'Hagan,RonanC;Fuller,Peter;Martin,KatieR;Shumway,StuartD;MacKeigan,JeffreyP
- 通讯作者:MacKeigan,JeffreyP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William S Hlavacek其他文献
William S Hlavacek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William S Hlavacek', 18)}}的其他基金
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10399590 - 财政年份:2021
- 资助金额:
$ 45.63万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 45.63万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 45.63万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10337242 - 财政年份:2020
- 资助金额:
$ 45.63万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9547104 - 财政年份:2017
- 资助金额:
$ 45.63万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9139424 - 财政年份:2015
- 资助金额:
$ 45.63万 - 项目类别:
Hardening Software for Rule-based models-Competitive Revision
基于规则的模型的强化软件 - 竞争性修订
- 批准号:
10382135 - 财政年份:2014
- 资助金额:
$ 45.63万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 45.63万 - 项目类别:
Research Grant