Commercializing the μSIM: A Modular Platform for the Development and Analysis of Barrier Tissue Models

商业化μSIM:用于屏障组织模型开发和分析的模块化平台

基本信息

  • 批准号:
    10385120
  • 负责人:
  • 金额:
    $ 89.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-06 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Abstract This project will commercialize a cell culture platform featuring SiMPore's ultrathin silicon- based membrane technology to enable advanced research on tissue barriers. In vitro models of tissue barriers such as the gut, lung, and vasculature are important for understanding the basis of disease and for assessing the ability of drug formulations to reach target tissues. Despite the growing use of sophisticated cell culture platforms (e.g., 3D cell culture, microphysiological systems, and tissue chips), the simplest and most popular tools for the in vitro study of barrier tissues remains the Corning Transwell™ and its competitors (collectively referred to herein as “Transwells™”). These products have a suspended ~ 10 µm thick polymer membrane creating apical and basal compartments which separate mono- or co-cultures grown on the membranes. Despite their popularity, Transwells® do not support high resolution microscopy nor provide the fluid flow needed to properly study vascular barriers and immune cell trafficking. SiMPore's membranes will be commercialized as cell culture products that overcome limitations of Transwells®, while retaining their easy to use format and offering features found in more sophisticated tissue chips. Our Phase I project successfully translated the laborious hand-made devices used in the laboratory of Professor James McGrath (University of Rochester) to a scalable fabrication workflow at SiMPore. Using a modular design, we developed an open-well Transwell-style culture unit that incorporates SiMPore's membranes, which further converts to a flow cell with the addition of a plug-and-play flow module. Devices were distributed to nine collaborating laboratories, all of whom reported success with the platform. SiMPore also successfully translated the dual-scale micro/nanoporous membranes developed by the McGrath laboratory to wafer-scale manufacturing. Our Phase II project will create commercially viable versions of Phase I prototypes to be marketed under the CytoVu™ brand. Aim 1 will increase membrane manufacturing capacity by relieving production bottlenecks and integrating automation. Aim 2 focuses on automating CytoVu™ device assembly. Aim 3 will test the manufactured devices in a network of collaborating laboratories while developing accessories that make the platform increasingly versatile and easy to use. This project will establish scalable manufacturing capacity at SiMPore for the CytoVu™ and its accessories, and also validate CytoVu™ products as competitive alternatives to incumbent products for the in vitro study of barrier tissues.
摘要 该项目将商业化一个细胞培养平台, 基于膜技术,使先进的研究组织屏障。的体外模型 肠、肺和脉管系统等组织屏障对于理解 用于评估药物制剂到达靶组织的能力。尽管 复杂的细胞培养平台的日益增长的使用(例如,3D细胞培养,微生理学 系统和组织芯片),最简单和最流行的工具,在体外研究的屏障 组织仍然是Corning Transwell™及其竞争者(在本文中统称为“Corning Transwell ™”)。 “Transwells™”)。这些产品具有约10 µm厚的悬浮聚合物膜, 顶部和底部隔室,其分离生长在基底上的单培养物或共培养物。 膜。尽管它们很受欢迎,但Transwells®不支持高分辨率显微镜 也不能提供适当研究血管屏障和免疫细胞所需的体液流 跟踪SiMPore的膜将作为细胞培养产品商业化, 克服Transwells®的局限性,同时保留其易于使用的格式和操作 在更复杂的组织芯片中发现的特征。 我们的第一阶段项目成功地将用于 James麦格拉思教授(罗切斯特大学)的实验室进行可扩展的制造 现在在SiMPore工作。使用模块化设计,我们开发了一种开放式Transwell式 一个包含SiMPore膜的培养单元,它进一步转化为一个具有 增加了即插即用的流模块。设备分发给9个合作 实验室,所有这些实验室都报告了该平台的成功。SiMPore还成功地 翻译了由麦格拉思实验室开发的双尺度微/纳米多孔膜 到晶圆级制造。 我们的第二阶段项目将创建商业上可行的第一阶段原型版本, 以CytoVu™品牌销售。目标1将通过以下方式提高膜制造能力: 消除生产瓶颈并集成自动化。目标2侧重于自动化 CytoVu™器械组装件。Aim 3将在一个网络中测试制造的设备, 合作实验室,同时开发配件,使平台越来越 多功能且易于使用。该项目将建立可扩展的制造能力, CytoVu™及其附件的SiMPore,并验证CytoVu™产品作为 用于屏障组织体外研究的现有产品的竞争性替代品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Andrew Roussie其他文献

James Andrew Roussie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Andrew Roussie', 18)}}的其他基金

Commercializing the μSIM: A Modular Platform for the Development and Analysis of Barrier Tissue Models
商业化μSIM:用于屏障组织模型开发和分析的模块化平台
  • 批准号:
    10580031
  • 财政年份:
    2020
  • 资助金额:
    $ 89.37万
  • 项目类别:
Commercialization of Novel Silicon Microslit Filters for Microplastic Contamination Testing
用于微塑料污染测试的新型硅微缝过滤器的商业化
  • 批准号:
    10325256
  • 财政年份:
    2019
  • 资助金额:
    $ 89.37万
  • 项目类别:

相似国自然基金

FGF8通过Ras/MEK/ERK信号通路调控apical ES结构影响精子生成的机制研究
  • 批准号:
    81801519
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
  • 批准号:
    10730981
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
Structural diversity of ceramide moiety responsible for apical membrane function of bladder transitional epithelial cells
负责膀胱移行上皮细胞顶膜功能的神经酰胺部分的结构多样性
  • 批准号:
    23K08792
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of photodynamic diagnosis for apical periodontitis based on 5-ALA fluorescence live imaging
基于5-ALA荧光实时成像的根尖周炎光动力诊断方法的建立
  • 批准号:
    23K09188
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Epithelial apical membrane polarization, morphogenesis, and regulation of gene expression
上皮顶膜极化、形态发生和基因表达调控
  • 批准号:
    BB/X000575/1
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
    Research Grant
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
  • 批准号:
    10629101
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
Evaluation of Trigeminal Ganglia Sensory Neuronal Population/s Mediating MIF-Induced Anti-Nociception in a Model of Apical Periodontitis.
根尖周炎模型中三叉神经节感觉神经元群介导 MIF 诱导的抗伤害感受的评估。
  • 批准号:
    10822712
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
Cell-type specific assembly of apical extracellular matrices
顶端细胞外基质的细胞类型特异性组装
  • 批准号:
    10749768
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
Exploring the role of phosphoinositides in the trafficking of proteins to the apical complex in the malaria parasite Plasmodium falciparum.
探索磷酸肌醇在疟原虫恶性疟原虫顶复合体蛋白质运输中的作用。
  • 批准号:
    495093
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
    Operating Grants
Étude du rôle de la phosphatase de phosphoinositides SAC1 dans le trafic de protéines au complexe apical chez le parasite de la malaria Plasmodium falciparum
疟疾疟原虫顶端寄生虫复合物中磷酸肌醇磷酸酶 SAC1 的研究
  • 批准号:
    486094
  • 财政年份:
    2022
  • 资助金额:
    $ 89.37万
  • 项目类别:
    Studentship Programs
Illuminating apical extracellular matrix structure and biogenesis
阐明顶端细胞外基质结构和生物发生
  • 批准号:
    10654029
  • 财政年份:
    2022
  • 资助金额:
    $ 89.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了