Natural Language Processing and Automated Speech Recognition to Identify Older Adults with Cognitive Impairment
自然语言处理和自动语音识别可识别患有认知障碍的老年人
基本信息
- 批准号:10383696
- 负责人:
- 金额:$ 81.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAcuteAddressAlgorithmsAlzheimer&aposs disease related dementiaCaregiversChicagoClinicalClinical assessmentsCodeCognitionCognitiveDataData AnalysesData ElementData ScientistData SetDevelopmentDiagnosisDiagnosticDocumentationEarly DiagnosisElderlyElectronic Health RecordHealth ServicesHealth systemImpaired cognitionIndividualInsurance CarriersMachine LearningMeasuresMental disordersMethodsNatural Language ProcessingNeurocognitiveNew York CityParkinson DiseasePatient CarePatientsPersonsPhysiciansPopulationPositioning AttributePreventive carePrimary Health CareProceduresProviderPsychiatric DiagnosisReference StandardsResearchResearch PersonnelResource AllocationRisk FactorsSamplingSemanticsSensitivity and SpecificityServicesSigns and SymptomsSpeechStructureStudy SubjectTechnologyTestingTextTimeTrainingUnited StatesValidationVisitadverse event riskaging populationautomated speech recognitionbasecare coordinationclinical encountercognitive functioncognitive testingdeep learningdemographicsdiagnostic algorithmelectronic dataelectronic structurefallsfeature extractionfinancial incentivehealth care settingsimprovedinsurance claimsmachine learning algorithmmachine learning classifiermental statemild cognitive impairmentmultidisciplinarypreventprimary care settingrecruitrisk mitigationscreeningsecondary analysisstructured datasuccesstesting servicestooltreatment choiceunstructured data
项目摘要
Project Summary
The purpose of this proposal is to develop two strategies, natural language processing (NLP) and automated
speech analysis (ASA), to enable automated identification of patients with cognitive impairment (CI), from mild
cognitive impairment (MCI) to Alzheimer’s Disease Related Dementias (ADRD) in clinical settings. The number
of older adults in the United States with MCI and ADRD is increasing and yet the ability of clinicians and
researchers to identify them at scale has advanced little over recent decades and screening with clinical
assessments is done inconsistently. Alternative strategies using available data, like analysis of diagnostic
codes in the clinical record or insurance claims, have very low sensitivity. NLP and ASA used with machine
learning are technologies that could greatly increase ability to detect MCI and ADRD in clinical contexts. NLP
automatically converts text in the electronic health record (EHR) into structured concepts suitable for analysis.
Thus, clinicians’ documentation of signs and symptoms or orders of tests and services that reflect or address
cognitive limitations can be efficiently captured, possibly long before the clinician uses an ADRD-related
diagnostic code. ASA directly measures cognition by recognizing different features of cognition captured in
speech. Extracting features through both NLP and ASA could thus provide a unique measure of cognition and
its impact on the individual and their caregivers.
Early detection of MCI and ADRD can help researchers identify appropriate patients for research and help
clinicians and health systems target patients for preventive care and care coordination. For these reasons,
more efficient, highly scalable strategies are needed to identify people with MCI and ADRD. The Specific Aims
of this proposal are to (1) Develop and validate a ML algorithm using features extracted from the EHR with
NLP to identify patients with CI, (2) Develop and validate a ML algorithm using features extracted from ASA of
audio recordings of patient-provider encounters during routine primary care visits to identify patients with CI,
(3) Develop and validate a ML algorithm using both NLP and ASA extracted features to create an integrated CI
diagnostic algorithm. We will develop machine learning algorithms using NLP and ASA extracted features
trained against neurocognitive assessment data on 800 primary care patients in New York City and validate
them in an independent sample of 200 patients in Chicago. In secondary analyses we will train ML algorithms
to identify MCI and its subtypes. This project will be the most rigorous development of NLP, ASA, and ML
algorithms for CI yet performed, the first to test ASA in primary care settings, and the first to test NLP and ASA
feature extraction strategies in combination. The multi-disciplinary team of clinicians, health services
researchers, and neurocognitive and data scientists will apply machine learning to develop these highly
scalable, automated technologies for identification of MCI and ADRD.
1
项目摘要
该提案的目的是开发两种策略,自然语言处理(NLP)和自动化
语音分析(阿萨),以实现从轻度认知障碍(CI)患者
认知障碍(MCI)与阿尔茨海默病相关性痴呆(ADRD)的关系。数量
在美国,MCI和ADRD的老年人正在增加,但临床医生的能力和
近几十年来,研究人员在大规模识别它们方面进展甚微,
评估不一致。使用现有数据的替代策略,如诊断分析
临床记录或保险索赔中的代码的敏感性非常低。与机器一起使用的NLP和阿萨
学习是可以大大提高在临床环境中检测MCI和ADRD的能力的技术。NLP
自动将电子健康记录(EHR)中的文本转换为适合分析的结构化概念。
因此,临床医生的体征和症状的文件或测试和服务的顺序,反映或解决
认知限制可以有效地捕获,可能早在临床医生使用ADRD相关的
诊断代码阿萨通过识别不同的认知特征来直接测量认知,
演讲因此,通过NLP和阿萨提取特征可以提供一种独特的认知测量方法,
它对个人及其照顾者的影响。
早期检测MCI和ADRD可以帮助研究人员识别合适的患者进行研究并提供帮助
临床医生和卫生系统以患者为目标进行预防性护理和护理协调。基于这些理由,
需要更有效的、高度可扩展的策略来识别患有MCI和ADRD的人。具体目标
(1)使用从EHR中提取的特征开发和验证ML算法,
NLP识别CI患者,(2)使用从阿萨中提取的特征开发和验证ML算法,
在常规初级保健访问期间患者-提供者会面的录音,以识别CI患者,
(3)使用NLP和阿萨提取的特征开发并验证ML算法,以创建集成CI
诊断算法我们将使用NLP和阿萨提取的特征开发机器学习算法
根据纽约市800名初级保健患者的神经认知评估数据进行培训,
他们在芝加哥的200名患者中进行了独立的抽样调查。在二次分析中,我们将训练ML算法
以识别MCI及其亚型。这个项目将是NLP、阿萨和ML最严格的发展
第一个在初级保健环境中测试阿萨,第一个测试NLP和阿萨
特征提取策略的组合。由临床医生、卫生服务部门、
研究人员,神经认知和数据科学家将应用机器学习来开发这些高度
可扩展的自动化技术,用于识别MCI和ADRD。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex D Federman其他文献
Natural Language Processing to Identify Patients with Cognitive Impairment
自然语言处理识别认知障碍患者
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Khalil I Hussein;Lili Chan;Tielman T. Van Vleck;Kelly Beers;M. R. Mindt;Michael Wolf;Laura M. Curtis;Parul Agarwal;Juan P Wisnivesky;Girish N. Nadkarni;Alex D Federman - 通讯作者:
Alex D Federman
Relationship Between Cognitive Impairment and Depression Among Middle Aged and Older Adults in Primary Care
初级保健中老年人认知障碍与抑郁症的关系
- DOI:
10.1177/23337214231214217 - 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
Alex D Federman;Jacqueline Becker;Fernando Carnavali;M. Rivera Mindt;Dayeon Cho;Gaurav Pandey;Lili Chan;Laura M. Curtis;Michael S Wolf;Juan P Wisnivesky - 通讯作者:
Juan P Wisnivesky
Alex D Federman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex D Federman', 18)}}的其他基金
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
- 批准号:
10160741 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
- 批准号:
10427387 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
Natural Language Processing and Automated Speech Recognition to Identify Older Adults with Cognitive Impairment
自然语言处理和自动语音识别可识别患有认知障碍的老年人
- 批准号:
10609461 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
- 批准号:
10629300 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
EHR-based Universal Medication Schedule to Improve Adherence to Complex Regimens
基于 EHR 的通用用药计划可提高对复杂治疗方案的依从性
- 批准号:
9980518 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
EHR-based Universal Medication Schedule to Improve Adherence to Complex Regimens
基于 EHR 的通用用药计划可提高对复杂治疗方案的依从性
- 批准号:
9358340 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
Home-based Primary Care for Homebound Seniors: a Randomized Controlled Trial
居家老年人的家庭初级护理:随机对照试验
- 批准号:
9082810 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
Obesity and Asthma: Unveiling Metabolic and Behavioral Pathways
肥胖和哮喘:揭示代谢和行为途径
- 批准号:
9127632 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
Self-management behaviors among COPD patients with multi-morbidity
多种疾病的慢性阻塞性肺病患者的自我管理行为
- 批准号:
8976686 - 财政年份:2015
- 资助金额:
$ 81.03万 - 项目类别:
Longitudinal study of cognition, health literacy, and self-care in COPD patients
COPD患者认知、健康素养和自我护理的纵向研究
- 批准号:
8490418 - 财政年份:2011
- 资助金额:
$ 81.03万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 81.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 81.03万 - 项目类别:
Operating Grants