Natural Language Processing and Automated Speech Recognition to Identify Older Adults with Cognitive Impairment

自然语言处理和自动语音识别可识别患有认知障碍的老年人

基本信息

项目摘要

Project Summary The purpose of this proposal is to develop two strategies, natural language processing (NLP) and automated speech analysis (ASA), to enable automated identification of patients with cognitive impairment (CI), from mild cognitive impairment (MCI) to Alzheimer’s Disease Related Dementias (ADRD) in clinical settings. The number of older adults in the United States with MCI and ADRD is increasing and yet the ability of clinicians and researchers to identify them at scale has advanced little over recent decades and screening with clinical assessments is done inconsistently. Alternative strategies using available data, like analysis of diagnostic codes in the clinical record or insurance claims, have very low sensitivity. NLP and ASA used with machine learning are technologies that could greatly increase ability to detect MCI and ADRD in clinical contexts. NLP automatically converts text in the electronic health record (EHR) into structured concepts suitable for analysis. Thus, clinicians’ documentation of signs and symptoms or orders of tests and services that reflect or address cognitive limitations can be efficiently captured, possibly long before the clinician uses an ADRD-related diagnostic code. ASA directly measures cognition by recognizing different features of cognition captured in speech. Extracting features through both NLP and ASA could thus provide a unique measure of cognition and its impact on the individual and their caregivers. Early detection of MCI and ADRD can help researchers identify appropriate patients for research and help clinicians and health systems target patients for preventive care and care coordination. For these reasons, more efficient, highly scalable strategies are needed to identify people with MCI and ADRD. The Specific Aims of this proposal are to (1) Develop and validate a ML algorithm using features extracted from the EHR with NLP to identify patients with CI, (2) Develop and validate a ML algorithm using features extracted from ASA of audio recordings of patient-provider encounters during routine primary care visits to identify patients with CI, (3) Develop and validate a ML algorithm using both NLP and ASA extracted features to create an integrated CI diagnostic algorithm. We will develop machine learning algorithms using NLP and ASA extracted features trained against neurocognitive assessment data on 800 primary care patients in New York City and validate them in an independent sample of 200 patients in Chicago. In secondary analyses we will train ML algorithms to identify MCI and its subtypes. This project will be the most rigorous development of NLP, ASA, and ML algorithms for CI yet performed, the first to test ASA in primary care settings, and the first to test NLP and ASA feature extraction strategies in combination. The multi-disciplinary team of clinicians, health services researchers, and neurocognitive and data scientists will apply machine learning to develop these highly scalable, automated technologies for identification of MCI and ADRD. 1
项目摘要 这项提议的目的是开发两种策略,自然语言处理(NLP)和自动化 语音分析(ASA),支持自动识别认知障碍(CI)患者,从轻度 认知障碍(MCI)到阿尔茨海默病相关痴呆(ADRD)的临床环境。数字 在美国,患有MCI和ADRD的老年人的比例正在增加,但临床医生和 近几十年来,研究人员在大规模识别它们方面进展甚微,并进行了临床筛查 评估的结果并不一致。使用可用数据的替代策略,如分析诊断 临床记录或保险索赔中的代码敏感度很低。NLP和ASA与计算机一起使用 学习是可以极大地提高在临床环境中检测MCI和ADRD的能力的技术。NLP 自动将电子健康记录(EHR)中的文本转换为适合分析的结构化概念。 因此,临床医生记录的体征和症状或反映或处理的测试和服务的顺序 认知限制可以被有效地捕获,可能早在临床医生使用ADRD相关的 诊断代码。ASA通过识别捕获的认知的不同特征来直接测量认知 演讲。因此,通过NLP和ASA提取特征可以提供一种独特的认知和 它对个人和他们的照顾者的影响。 MCI和ADRD的早期检测可以帮助研究人员确定合适的患者进行研究和帮助 临床医生和卫生系统以患者为目标进行预防性护理和护理协调。出于这些原因, 需要更高效、高度可扩展的策略来识别MCI和ADRD患者。具体目标 该建议的目的是(1)使用从电子病历中提取的特征来开发和验证ML算法 NLP用于识别CI患者,(2)使用从ASA提取的特征开发并验证ML算法 在常规初级保健访问期间患者与提供者会面的音频记录,以识别CI患者, (3)使用NLP和ASA提取的特征开发并验证ML算法,以创建集成的CI 诊断算法。我们将使用NLP和ASA提取的特征来开发机器学习算法 针对纽约市800名初级保健患者的神经认知评估数据进行培训并验证 他们在芝加哥的200名患者中进行了独立样本调查。在二次分析中,我们将训练ML算法 以确定MCI及其亚型。该项目将是NLP、ASA和ML最严格的开发 CI的算法尚未执行,第一个在初级保健环境中测试ASA,第一个测试NLP和ASA 特征提取策略的组合。由临床医生、医疗服务部门组成的多学科团队 研究人员以及神经认知和数据科学家将应用机器学习来开发这些高度 用于识别MCI和ADRD的可扩展、自动化技术。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex D Federman其他文献

Natural Language Processing to Identify Patients with Cognitive Impairment
自然语言处理识别认知障碍患者
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khalil I Hussein;Lili Chan;Tielman T. Van Vleck;Kelly Beers;M. R. Mindt;Michael Wolf;Laura M. Curtis;Parul Agarwal;Juan P Wisnivesky;Girish N. Nadkarni;Alex D Federman
  • 通讯作者:
    Alex D Federman
Relationship Between Cognitive Impairment and Depression Among Middle Aged and Older Adults in Primary Care
初级保健中老年人认知障碍与抑郁症的关系
  • DOI:
    10.1177/23337214231214217
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Alex D Federman;Jacqueline Becker;Fernando Carnavali;M. Rivera Mindt;Dayeon Cho;Gaurav Pandey;Lili Chan;Laura M. Curtis;Michael S Wolf;Juan P Wisnivesky
  • 通讯作者:
    Juan P Wisnivesky

Alex D Federman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex D Federman', 18)}}的其他基金

Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
  • 批准号:
    10160741
  • 财政年份:
    2020
  • 资助金额:
    $ 81.52万
  • 项目类别:
Natural Language Processing and Automated Speech Recognition to Identify Older Adults with Cognitive Impairment
自然语言处理和自动语音识别可识别患有认知障碍的老年人
  • 批准号:
    10383696
  • 财政年份:
    2020
  • 资助金额:
    $ 81.52万
  • 项目类别:
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
  • 批准号:
    10427387
  • 财政年份:
    2020
  • 资助金额:
    $ 81.52万
  • 项目类别:
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
  • 批准号:
    10629300
  • 财政年份:
    2020
  • 资助金额:
    $ 81.52万
  • 项目类别:
EHR-based Universal Medication Schedule to Improve Adherence to Complex Regimens
基于 EHR 的通用用药计划可提高对复杂治疗方案的依从性
  • 批准号:
    9980518
  • 财政年份:
    2016
  • 资助金额:
    $ 81.52万
  • 项目类别:
EHR-based Universal Medication Schedule to Improve Adherence to Complex Regimens
基于 EHR 的通用用药计划可提高对复杂治疗方案的依从性
  • 批准号:
    9358340
  • 财政年份:
    2016
  • 资助金额:
    $ 81.52万
  • 项目类别:
Home-based Primary Care for Homebound Seniors: a Randomized Controlled Trial
居家老年人的家庭初级护理:随机对照试验
  • 批准号:
    9082810
  • 财政年份:
    2016
  • 资助金额:
    $ 81.52万
  • 项目类别:
Obesity and Asthma: Unveiling Metabolic and Behavioral Pathways
肥胖和哮喘:揭示代谢和行为途径
  • 批准号:
    9127632
  • 财政年份:
    2016
  • 资助金额:
    $ 81.52万
  • 项目类别:
Self-management behaviors among COPD patients with multi-morbidity
多种疾病的慢性阻塞性肺病患者的自我管理行为
  • 批准号:
    8976686
  • 财政年份:
    2015
  • 资助金额:
    $ 81.52万
  • 项目类别:
Longitudinal study of cognition, health literacy, and self-care in COPD patients
COPD患者认知、健康素养和自我护理的纵向研究
  • 批准号:
    8490418
  • 财政年份:
    2011
  • 资助金额:
    $ 81.52万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 81.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了