Effects of geospatial factors and health worker characteristics on child health: implications for interventions in low-resource settings
地理空间因素和卫生工作者特征对儿童健康的影响:对资源匮乏环境中干预措施的影响
基本信息
- 批准号:10389234
- 负责人:
- 金额:$ 4.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2024-12-14
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The career goal of the investigator is to become an independent epidemiologist at an academic
institution and utilize a multidisciplinary framework to research and design interventions that improve the lives
of children in low-resource settings. The goal of the proposed study is to understand geospatial factors and
characteristics of community health workers that are associated with better child growth and health. The study
will analyze existing data on children from a cluster-randomized controlled trial conducted in rural Bangladesh
(n = 4,708). The investigator will use data on child growth, laboratory data on biomarkers of environmental
enteric dysfunction (a proposed cause of poor growth) in a subset of ~1500 children per site, household
information (including geolocation and reported walking time to village resources), and data on characteristics
of community health workers that delivered the water, sanitation, and hygiene interventions. We propose to
accomplish the following aims: Aim 1: Estimate the independent effects of distance to different resources on
child growth and EED. Multiple regression will be performed to test the impact of walking time to healthcare
center, markets, water source, and major roads on child growth and EED biomarkers. Aim 2: Create a
household accessibility score and determine its association with child growth and EED. A household
accessibility score will be created using principal components analysis on travel time to resources in the village
and we will use geospatial analyses to determine the spatial association between household accessibility and
child growth and EED biomarkers. Aim 3: Determine characteristics of community health workers that improve
child growth in the context of WaSH interventions. Machine learning and a variable importance analysis will be
used to understand characteristics that independently predict child growth. By understanding the heterogeneity
of spatial risk factors and their associations with child growth and health, we may be able to target households
with children at increased risk for poor development and inform the effective implementation of interventions for
child growth and health in rural, low-resource settings. The training plan developed by the investigator, sponsor
Dr. Lia Fernald, and co-sponsors Dr. Alan Hubbard and Dr. Justin Remais will support the investigator’s goals
to gain advanced training in epidemiology, biostatistics, and data science, better understand advanced topics
in global child health, and improve on oral and written scientific communication skills. Training and research
will occur at University of California, Berkeley, which has a reputation for mentorship and supporting scientific
research with rigorous methodology among a diverse pool of faculty members interested in multidisciplinary
causes of health outcomes. Overall, the institutional environment, sponsorship team, training plan, and
proposed research project will facilitate the investigator’s transition to an independent research career at an
academic institution implementing rigorous interventions that will improve the health and development of
children in rural, low-resource settings.
研究者的职业目标是成为一名独立的流行病学家,
建立和利用多学科框架,研究和设计改善生活的干预措施
低资源环境中的儿童。拟议研究的目标是了解地理空间因素,
社区卫生工作者的特点与更好的儿童生长和健康有关。研究
将分析在孟加拉国农村进行的一项随机分组对照试验中儿童的现有数据
(n = 4 708)。研究者将使用儿童生长的数据、环境生物标志物的实验室数据,
每个研究中心家庭约1500名儿童的肠道功能障碍(一种拟议的生长不良原因)
信息(包括地理位置和报告的前往村庄资源的步行时间)以及特征数据
提供水、环境卫生和个人卫生干预措施的社区卫生工作者。我们建议
目标1:估计距离对不同资源的独立影响,
孩子的成长和EED将进行多元回归,以测试步行时间对医疗保健的影响
中心、市场、水源和主要道路对儿童生长和EED生物标志物的影响。目标2:创建一个
家庭无障碍评分,并确定其与儿童成长和EED的关联。一个家喻户晓
可达性得分将使用主成分分析的旅行时间,在村里的资源
我们将使用地理空间分析来确定家庭可达性和
儿童生长和EED生物标志物。目标3:确定社区卫生工作者的特征,
儿童成长的背景下,WASH干预措施。机器学习和变量重要性分析将是
用于了解独立预测儿童生长的特征。通过了解
空间风险因素及其与儿童生长和健康的关系,我们可以针对家庭
儿童发展不良风险增加,并为有效实施干预措施提供信息,
农村、低资源环境中的儿童成长和健康。研究者、申办者制定的培训计划
博士Lia Fernald和共同赞助人Alan Hubbard博士和Justin Remais博士将支持研究者的目标
获得流行病学,生物统计学和数据科学的高级培训,更好地了解高级主题
在全球儿童健康方面,并提高口头和书面科学交流技能。训练研究
将在加州大学伯克利分校举行,该大学以导师和支持科学研究而闻名
在对多学科感兴趣的教师中进行严格的方法论研究
健康结果的原因。总体而言,机构环境、赞助团队、培训计划和
拟议的研究项目将促进研究者的过渡到一个独立的研究生涯,
学术机构实施严格的干预措施,将改善健康和发展,
农村、资源匮乏环境中的儿童。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlin Hemlock其他文献
Caitlin Hemlock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caitlin Hemlock', 18)}}的其他基金
Effects of geospatial factors and health worker characteristics on child health: implications for interventions in low-resource settings
地理空间因素和卫生工作者特征对儿童健康的影响:对资源匮乏环境中干预措施的影响
- 批准号:
10515645 - 财政年份:2021
- 资助金额:
$ 4.25万 - 项目类别:
Effects of geospatial factors and health worker characteristics on child health: implications for interventions in low-resource settings
地理空间因素和卫生工作者特征对儿童健康的影响:对资源匮乏环境中干预措施的影响
- 批准号:
10768198 - 财政年份:2021
- 资助金额:
$ 4.25万 - 项目类别:
相似海外基金
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
- 批准号:
481139 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别:
Operating Grants
Individual, contextual, and geospatial influences on decisions to drive under the influence of cannabis
个人、背景和地理空间对大麻影响下驾驶决策的影响
- 批准号:
10585451 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别:
Passive social media use, coping, and momentary stress in geospatial context: longitudinal effects on mental health and intermediate biological pathways in a racially diverse sample of adolescents
地理空间背景下的被动社交媒体使用、应对和瞬时压力:对不同种族青少年样本中心理健康和中间生物途径的纵向影响
- 批准号:
10815348 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别:
Expanding the Geospatial Identification of Elevated Suicide Risk (GIESR) Method to Identify Neighborhood Level Risk and Protective Factors for Youth Suicide Ideation and Attempts
扩展自杀风险高的地理空间识别 (GIESR) 方法,以识别社区层面的风险以及青少年自杀意念和企图的保护因素
- 批准号:
10525294 - 财政年份:2022
- 资助金额:
$ 4.25万 - 项目类别:
Expanding the Geospatial Identification of Elevated Suicide Risk (GIESR) Method to Identify Neighborhood Level Risk and Protective Factors for Youth Suicide Ideation and Attempts
扩展高自杀风险地理空间识别 (GIESR) 方法,以识别社区层面的风险以及青少年自杀意念和企图的保护因素
- 批准号:
10743151 - 财政年份:2022
- 资助金额:
$ 4.25万 - 项目类别:
Geospatial drivers of cancer care disparities and their susceptibility to health policy changes
癌症护理差异的地理空间驱动因素及其对卫生政策变化的敏感性
- 批准号:
10525116 - 财政年份:2022
- 资助金额:
$ 4.25万 - 项目类别:
Geospatial drivers of cancer care disparities and their susceptibility to health policy changes
癌症护理差异的地理空间驱动因素及其对卫生政策变化的敏感性
- 批准号:
10657753 - 财政年份:2022
- 资助金额:
$ 4.25万 - 项目类别:
Investigating Toxic Elements and Nanoparticles in ALS Etiology: A Geospatial and Toxicological Evaluation of Massachusetts ALS Registry Patients
研究 ALS 病因中的有毒元素和纳米颗粒:对马萨诸塞州 ALS 登记患者的地理空间和毒理学评估
- 批准号:
10705574 - 财政年份:2022
- 资助金额:
$ 4.25万 - 项目类别:
Expanding the Geospatial Identification of Elevated Suicide Risk (GIESR) Method to Identify Neighborhood Level Risk and Protective Factors for Youth Suicide Ideation and Attempts
扩展自杀风险高的地理空间识别 (GIESR) 方法,以识别社区层面的风险以及青少年自杀意念和企图的保护因素
- 批准号:
10665074 - 财政年份:2022
- 资助金额:
$ 4.25万 - 项目类别:
Air Pollution, Stress and Asthma Morbidity Risk: Role of Biological and Geospatial Markers
空气污染、压力和哮喘发病风险:生物和地理空间标记的作用
- 批准号:
10396626 - 财政年份:2021
- 资助金额:
$ 4.25万 - 项目类别: