Administrative Supplement to A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G) 的行政补充
基本信息
- 批准号:10388520
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAdministrative SupplementAwardChargeCommunitiesEventFrequenciesFundingFutureGoalsHeliumHigh temperature of physical objectLeadLiquid substanceMagnetic ResonanceMeasurementMedicalModelingNMR SpectroscopyNational Center for Research ResourcesPhasePositioning AttributeProtonsResearchResolutionScienceSignal TransductionSiteSourceTechniquesTechnologyTemperatureTestingTheftTimeUnited States National Institutes of Healthcold temperaturecostdesigndesign and constructiondrug developmentdrug discoveryexperimental studyferriteimprovedinnovationmagnetic fieldprogramsscreeningwound
项目摘要
In the simplest view of NMR, the advantages of higher field (B0) are improved sensitivity and resolution. For
NMR spectroscopy, sensitivity and resolution depend, respectively, on amplitude and frequency of
measurement. Sensitivity per unit time in signal averaging experiments and resolution for 3D experiments both
ideally improve as ω3 and, hence, B03. Thus, increased proton frequency, for example, from 900 MHz, currently
the highest frequency at the MIT-Harvard Magnetic Resonance Center, to 1.3 GHz, increases sensitivity and
resolution by a factor of 3. This benefit of higher frequency was the basis of our initiative in 2000 to propose a
long march towards a 1-GHz NMR magnet by combining low- and high-temperature superconducting magnets,
LTS and HTS; in 2007 the proposed frequency was increased to 1.3 GHz. HTS is mandatory at frequencies
above 1-GHz, thus, our 1.3-GHz LTS/HTS NMR magnet (1.3G) combines a 500-MHz LTS NMR magnet
(L500) with an 800-MHz HTS insert (H800). HTS conductors are used in this 4K application not for their high-
temperature capabilities, but rather for their ability to achieve significantly higher magnetic field than can be
reached by LTS alone. Despite the best efforts in design and construction, the homogeneity of an “as-wound”
NMR magnet in reality will be more than two orders of magnitude away from required specifications. For field
shimming, another critical activity in this Revised Phase 3BZ is field mapping, requiring exact probe positioning
along optimized path and accurate measurement, from which to derive the target field gradients that in turn
guide the design of appropriate shim coils, in our case, of HTS and room-temperature (RT), both to be
designed and built in this Revised Phase 3BZ. Because HTS insert is notorious as a source of “large” non-
uniform field, field shimming our 1.3G will be challenging and laborious, requiring innovative ideas. The specific
aims (SA) of the last phase of this MIT 1.3-GHz LTS/HTS NMR magnet that began in 2000 are to achieve two
vital requirements for NMR. In the first two years, we will: 1) replace the H800 damaged in March 2018 test
with a new 800-MHz HTS insert (H800N) and 2) combine L500 and H800N to complete a new non-NMR 30.5-
T L500/H800N magnet; and in the last two years we will 3) convert the non-NMR 30.5-T field to realize a high-
resolution 1.3 GHz NMR magnet (1.3G). To achieve SA3, we will apply two innovative techniques: 1) HTS Z1
and Z2 shim coils, installed in the bore of H800N; and 2) current-sweep-reversal and field-shaking to mitigate
the screening-current field (SCF), a non-uniform diamagnetic field, superposed on the main field that severely
degrades the spatial field quality particularly for HTS magnets like our H800N. We will also deploy ferro-
magnetic passive shimming and RT active shimming, both of our design. We believe that our 1.3G will become
a vital force in high-field NMR as well as for drug discovery and development; it will serve the entire U.S. NMR
community for decades to come and have a worldwide impact on biomedical sciences. We also believe that
our 1.3G will become a model for high-resolution >1-GHz NMR magnets that must incorporate HTS inserts.
从 NMR 最简单的角度来看,较高场 (B0) 的优点是提高灵敏度和分辨率。为了
核磁共振波谱、灵敏度和分辨率分别取决于振幅和频率
测量。信号平均实验中单位时间的灵敏度和 3D 实验的分辨率
理想情况下,改进为 ω3,因此改进为 B03。因此,目前质子频率从 900 MHz 增加到
麻省理工学院-哈佛磁共振中心的最高频率达到 1.3 GHz,提高了灵敏度
分辨率提高了 3 倍。更高频率的这种好处是我们在 2000 年提出一项倡议的基础
通过结合低温和高温超导磁体,向 1 GHz NMR 磁体迈进,
LTS 和 HTS; 2007 年,提议的频率增加到 1.3 GHz。 HTS 在频率上是强制性的
高于 1 GHz,因此,我们的 1.3 GHz LTS/HTS NMR 磁体 (1.3G) 结合了 500 MHz LTS NMR 磁体
(L500) 带有 800 MHz HTS 插入件 (H800)。 HTS 导体用于此 4K 应用并不是因为其高
温度能力,而是因为它们能够实现比实际更高的磁场的能力
仅通过 LTS 即可达到。尽管在设计和建造方面尽了最大努力,但“伤口”的同质性
实际上,核磁共振磁体与所需规格相差两个数量级以上。对于领域
匀场,修订后的第 3BZ 阶段的另一项关键活动是现场测绘,需要精确的探头定位
沿着优化的路径和精确的测量,从中导出目标场梯度,进而
指导适当的匀场线圈的设计,在我们的例子中,是 HTS 和室温 (RT) 的匀场线圈,两者均是
在此修订后的第 3BZ 阶段设计和建造。因为 HTS 插入物作为“大”非金属的来源而臭名昭著。
均匀场、场匀场我们的 1.3G 将具有挑战性和费力,需要创新的想法。具体的
2000 年开始的 MIT 1.3-GHz LTS/HTS NMR 磁体最后阶段的目标 (SA) 是实现两个
NMR 的重要要求。前两年,我们将: 1)更换2018年3月测试中损坏的H800
带有新的 800 MHz HTS 插入件 (H800N) 和 2) 将 L500 和 H800N 结合起来完成新的非 NMR 30.5-
T L500/H800N磁铁;在过去的两年里,我们将3)转换非NMR 30.5-T场以实现高
分辨率 1.3 GHz NMR 磁体 (1.3G)。为了实现 SA3,我们将应用两项创新技术:1) HTS Z1
和 Z2 匀场线圈,安装在 H800N 的孔中; 2) 电流扫描反转和场振动以减轻
屏蔽电流场 (SCF) 是一种不均匀的反磁场,叠加在主磁场上,严重影响
会降低空间场质量,特别是对于像我们的 H800N 这样的高温超导磁体。我们还将部署铁
磁被动匀场和 RT 主动匀场,都是我们的设计。我们相信我们的1.3G将会成为
高场核磁共振以及药物发现和开发的重要力量;它将服务于整个美国核磁共振
社区将在未来几十年内对生物医学科学产生全球影响。我们也相信
我们的 1.3G 将成为高分辨率 >1-GHz NMR 磁体的模型,必须包含 HTS 插入件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yukikazu Iwasa其他文献
Yukikazu Iwasa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yukikazu Iwasa', 18)}}的其他基金
A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G)
- 批准号:
10224650 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G)
- 批准号:
10471449 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G)
- 批准号:
10675082 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Tabletop liquid-helium-free, persistent-mode 1.5-T/70-mm osteoporosis MRI magnet
桌面无液氦、持续模式 1.5-T/70-mm 骨质疏松 MRI 磁体
- 批准号:
9239606 - 财政年份:2017
- 资助金额:
$ 19.5万 - 项目类别:
Liquid-helium-free persistent-mode HTS magnets for NMR and MRI applications
适用于 NMR 和 MRI 应用的无液氦持久模式 HTS 磁体
- 批准号:
8970154 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
Liquid-helium-free persistent-mode HTS magnets for NMR and MRI applications
适用于 NMR 和 MRI 应用的无液氦持久模式 HTS 磁体
- 批准号:
9094257 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
- 批准号:
8239103 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
- 批准号:
8334660 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
- 批准号:
8534118 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Compact, Neon/Cryocooled NMR Magnets Assembled from Superconducting YBCO Annuli
由超导 YBCO 环形材料组装而成的紧凑型氖/低温冷却 NMR 磁体
- 批准号:
7860466 - 财政年份:2009
- 资助金额:
$ 19.5万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant














{{item.name}}会员




