Administrative Supplement to A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G) 的行政补充
基本信息
- 批准号:10388520
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAdministrative SupplementAwardChargeCommunitiesEventFrequenciesFundingFutureGoalsHeliumHigh temperature of physical objectLeadLiquid substanceMagnetic ResonanceMeasurementMedicalModelingNMR SpectroscopyNational Center for Research ResourcesPhasePositioning AttributeProtonsResearchResolutionScienceSignal TransductionSiteSourceTechniquesTechnologyTemperatureTestingTheftTimeUnited States National Institutes of Healthcold temperaturecostdesigndesign and constructiondrug developmentdrug discoveryexperimental studyferriteimprovedinnovationmagnetic fieldprogramsscreeningwound
项目摘要
In the simplest view of NMR, the advantages of higher field (B0) are improved sensitivity and resolution. For
NMR spectroscopy, sensitivity and resolution depend, respectively, on amplitude and frequency of
measurement. Sensitivity per unit time in signal averaging experiments and resolution for 3D experiments both
ideally improve as ω3 and, hence, B03. Thus, increased proton frequency, for example, from 900 MHz, currently
the highest frequency at the MIT-Harvard Magnetic Resonance Center, to 1.3 GHz, increases sensitivity and
resolution by a factor of 3. This benefit of higher frequency was the basis of our initiative in 2000 to propose a
long march towards a 1-GHz NMR magnet by combining low- and high-temperature superconducting magnets,
LTS and HTS; in 2007 the proposed frequency was increased to 1.3 GHz. HTS is mandatory at frequencies
above 1-GHz, thus, our 1.3-GHz LTS/HTS NMR magnet (1.3G) combines a 500-MHz LTS NMR magnet
(L500) with an 800-MHz HTS insert (H800). HTS conductors are used in this 4K application not for their high-
temperature capabilities, but rather for their ability to achieve significantly higher magnetic field than can be
reached by LTS alone. Despite the best efforts in design and construction, the homogeneity of an “as-wound”
NMR magnet in reality will be more than two orders of magnitude away from required specifications. For field
shimming, another critical activity in this Revised Phase 3BZ is field mapping, requiring exact probe positioning
along optimized path and accurate measurement, from which to derive the target field gradients that in turn
guide the design of appropriate shim coils, in our case, of HTS and room-temperature (RT), both to be
designed and built in this Revised Phase 3BZ. Because HTS insert is notorious as a source of “large” non-
uniform field, field shimming our 1.3G will be challenging and laborious, requiring innovative ideas. The specific
aims (SA) of the last phase of this MIT 1.3-GHz LTS/HTS NMR magnet that began in 2000 are to achieve two
vital requirements for NMR. In the first two years, we will: 1) replace the H800 damaged in March 2018 test
with a new 800-MHz HTS insert (H800N) and 2) combine L500 and H800N to complete a new non-NMR 30.5-
T L500/H800N magnet; and in the last two years we will 3) convert the non-NMR 30.5-T field to realize a high-
resolution 1.3 GHz NMR magnet (1.3G). To achieve SA3, we will apply two innovative techniques: 1) HTS Z1
and Z2 shim coils, installed in the bore of H800N; and 2) current-sweep-reversal and field-shaking to mitigate
the screening-current field (SCF), a non-uniform diamagnetic field, superposed on the main field that severely
degrades the spatial field quality particularly for HTS magnets like our H800N. We will also deploy ferro-
magnetic passive shimming and RT active shimming, both of our design. We believe that our 1.3G will become
a vital force in high-field NMR as well as for drug discovery and development; it will serve the entire U.S. NMR
community for decades to come and have a worldwide impact on biomedical sciences. We also believe that
our 1.3G will become a model for high-resolution >1-GHz NMR magnets that must incorporate HTS inserts.
在核磁共振最简单的观点中,高场(B0)的优点是提高了灵敏度和分辨率。为
核磁共振波谱、灵敏度和分辨率分别取决于波幅和频率
测量。信号平均实验的单位时间灵敏度和3D实验的分辨率
最理想的改进是ω3,因此也就是B03。因此,提高质子频率,例如,从目前的900兆赫
麻省理工学院-哈佛磁共振中心的最高频率为1.3 GHz,提高了灵敏度和
分辨率提高了3倍。这一更高频率的好处是我们在2000年提出的倡议的基础
通过将低温和高温超导磁体结合起来,向1 GHz核磁共振磁体迈进了一大步,
LTS和HTS;2007年,建议的频率提高到1.3 GHz。HTS在频率上是强制性的
因此,在1 GHz以上,我们的1.3 GHz LTS/HTS核磁共振磁体(1.3G)结合了500 MHz LTS核磁共振磁体
(L500),带有800-MHz高温超导插件(H800)。在这种4K应用中使用HTS导体并不是因为它们的高功率
温度能力,而不是他们实现显著更高的磁场的能力
光是LTS就能联系到。尽管在设计和施工方面付出了最大的努力,但“原封不动”的同质性
核磁共振磁体在现实中将比所要求的规格差两个数量级以上。用于字段
垫片,在这个修订的阶段3BZ的另一个关键活动是现场映射,需要准确的探头定位
沿着优化的路径和精确的测量,从中得出目标场梯度,从而依次
指导设计适当的垫片线圈,在我们的情况下,高温超导和室温(RT),两者都是
在这个修订后的3BZ阶段设计和建造。因为HTS Insert是臭名昭著的“大量”非
统一的场地,场地垫片我们的1.3G将是具有挑战性的和艰苦的,需要创新的想法。具体的
麻省理工学院于2000年开始的1.3 GHz LTS/HTS核磁共振磁体的最后阶段的目标(SA)是实现两个
核磁共振的关键要求。在头两年,我们将:1)更换2018年3月测试时损坏的H800
使用新的800-MHz高温超导插件(H800N)和2)结合L500和H800N,完成新的非核磁共振30.5-
TL500/H800N磁体;在过去的两年里,我们将3)转换非核磁共振30.5-T场,以实现高
分辨率1.3 GHz核磁共振磁铁(1.3克)。为了实现SA3,我们将应用两项创新技术:1)HTS Z1
和Z2垫片线圈,安装在H800N的炮膛内;以及2)电流扫描反转和磁场抖动,以减轻
屏蔽电流场(SCF)是一种不均匀的反磁场,它叠加在主场上,严重地
会降低空间场质量,特别是像我们的H800N这样的高温超导磁体。我们还将部署Ferro-
磁力被动垫片和RT主动垫片,都是我们的设计。我们相信,我们的1.3G将成为
高场核磁共振以及药物发现和开发的重要力量;它将为整个美国核磁共振服务
在未来的几十年里,它将在世界范围内对生物医学科学产生影响。我们还认为,
我们的1.3G将成为高分辨率>;1-GHz核磁共振磁体的典范,必须包含HTS插件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yukikazu Iwasa其他文献
Yukikazu Iwasa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yukikazu Iwasa', 18)}}的其他基金
A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G)
- 批准号:
10224650 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G)
- 批准号:
10471449 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
A high-resolution 1.3-GHz LTS/HTS NMR magnet (1.3G)
高分辨率 1.3 GHz LTS/HTS NMR 磁体 (1.3G)
- 批准号:
10675082 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Tabletop liquid-helium-free, persistent-mode 1.5-T/70-mm osteoporosis MRI magnet
桌面无液氦、持续模式 1.5-T/70-mm 骨质疏松 MRI 磁体
- 批准号:
9239606 - 财政年份:2017
- 资助金额:
$ 19.5万 - 项目类别:
Liquid-helium-free persistent-mode HTS magnets for NMR and MRI applications
适用于 NMR 和 MRI 应用的无液氦持久模式 HTS 磁体
- 批准号:
8970154 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
Liquid-helium-free persistent-mode HTS magnets for NMR and MRI applications
适用于 NMR 和 MRI 应用的无液氦持久模式 HTS 磁体
- 批准号:
9094257 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
- 批准号:
8239103 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
- 批准号:
8334660 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
- 批准号:
8534118 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Compact, Neon/Cryocooled NMR Magnets Assembled from Superconducting YBCO Annuli
由超导 YBCO 环形材料组装而成的紧凑型氖/低温冷却 NMR 磁体
- 批准号:
7860466 - 财政年份:2009
- 资助金额:
$ 19.5万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Operating Grants














{{item.name}}会员




