Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
基本信息
- 批准号:10388935
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsActomyosinAddressAffectBehaviorBindingBiologicalBiological ProcessBiomechanicsBiomimeticsBiopolymersBlood capillariesCell CommunicationCell ShapeCell membraneCell modelCellsChemicalsCollagenCommunicationComplexComputer ModelsConsumptionCoupledCytokinesisCytoskeletonDevelopmentDiseaseDistantEquilibriumExperimental ModelsExtracellular MatrixF-ActinFeedbackGenerationsGrainHumanIn VitroKnowledgeLeadLengthLightMechanicsMembraneMicrofilamentsMissionModelingMolecular MotorsMorphogenesisMorphologyMotorMuscleMuscle CellsMyosin ATPaseNeoplasm MetastasisOsmotic PressureOutcomePathogenesisPhysicsPhysiologicalPlayProcessPropertyProteinsRelaxationResearchResearch PersonnelRheologyRoleShapesStressStructureStructure of thyroid parafollicular cellStudy modelsSystemTalentsTissuesTranslatingUnited States National Institutes of HealthVascular DiseasesWalkingbasebiological systemsbiophysical propertiescell motilitycell transformationdisabilityexperienceexperimental studyextracellularfield studyin vitro Assayin vivoinsightmechanical forcemulti-scale modelingnovelnovel therapeutic interventionsimulationspatiotemporaltheoriestransmission processviscoelasticitywound healing
项目摘要
PROJECT SUMMARY
The ability of cells to generate mechanical forces is attributed primarily to molecular interactions between F-
actin and myosin molecular motors in the cell cytoskeleton. Force generated at the cytoskeleton level is
translated to cellular and tissue scales, facilitating interesting biomechanical phenomena at multiple scales. For
example, it endows the actin cytoskeleton with complex, non-equilibrium viscoelastic properties which cannot
be described by theories from statistical physics based on thermal equilibrium. It also drives drastic
morphological transformations of cells accompanied by large-scale flow of the cell cytoskeleton in cell
migration, division, and morphogenesis. In addition, cells use the force produced from the cytoskeleton for
structurally remodeling surrounding extracellular matrices as well as for mechanically communicating with
other cells in wound healing and capillary morphogenesis. In all these biomechanical phenomena, a delicate
balance between force generation, transmission, and relaxation plays a very important role, and the disruption
of the balance has dramatic impacts on the pathogenesis of disease, such as cancer metastasis. Despite the
significance of mechanical forces, understanding of principles that regulate the delicate balance in biological
structures still lacks. By developing multi-scale computational models and employing quantitative in vitro
experiments, we will shed light on universal roles and underlying principles of force generation, transmission,
and relaxation in biological processes at cytoskeleton, cell, and tissue scales. We aim to address two
fundamental questions: i) how forces are generated and lead to non-equilibrium viscoelastic behaviors in
disorganized actin cytoskeleton and ii) how the forces are translated to cellular and tissue scales and regulate
cell shape changes, matrix remodeling, and mechanical communication between distant cells by interacting
and competing with other intracellular and extracellular factors. Outcomes from the proposed research will
provide critical insights into fundamental understanding of physiological and pathophysiological processes
regulated by mechanical forces.
1
项目摘要
细胞产生机械力的能力主要归因于F-之间的分子相互作用。
肌动蛋白和肌球蛋白分子马达在细胞骨架。在细胞骨架水平产生的力是
转化为细胞和组织尺度,促进有趣的生物力学现象在多个尺度。为
例如,它赋予肌动蛋白细胞骨架复杂的非平衡粘弹性,
可以用基于热平衡的统计物理学理论来描述。它也会导致剧烈的
细胞形态的转变伴随着细胞骨架在细胞中的大规模流动
迁移、分裂和形态发生。此外,细胞利用细胞骨架产生的力
在结构上重塑周围的细胞外基质以及用于与
其他细胞在伤口愈合和毛细血管形态发生中的作用。在所有这些生物力学现象中,
力的产生、传递和松弛之间的平衡起着非常重要的作用,
这种平衡对疾病的发病机制,如癌症转移,有着巨大的影响。尽管
机械力的意义,对调节生物学中微妙平衡的原理的理解
结构仍然缺乏。通过开发多尺度计算模型和采用定量体外
实验,我们将阐明普遍的作用和基本原则的力量产生,传输,
以及在细胞骨架、细胞和组织尺度上的生物过程中的松弛。我们的目标是解决两个
基本问题:i)力是如何产生的,并导致非平衡粘弹性行为,
混乱的肌动蛋白细胞骨架和ii)如何将力转化为细胞和组织尺度并调节
细胞形状变化,基质重塑,以及通过相互作用在远处细胞之间进行机械通信
并与其他细胞内和细胞外因子竞争。拟议研究的成果将
提供对生理和病理生理过程的基本理解的重要见解
由机械力调节。
1
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
巨型单层囊泡内肌动蛋白细胞骨架的体外重建。
- DOI:10.3791/64026
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen,Sheng;Sun,ZacharyGao;Murrell,MichaelP
- 通讯作者:Murrell,MichaelP
Emergence of diverse patterns driven by molecular motors in the motility assay.
运动测定中分子马达驱动的多种模式的出现。
- DOI:10.1002/cm.21808
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Slater,Brandon;Jung,Wonyeong;Kim,Taeyoon
- 通讯作者:Kim,Taeyoon
Weak catch bonds make strong networks.
- DOI:10.1038/s41563-022-01288-0
- 发表时间:2022-09
- 期刊:
- 影响因子:41.2
- 作者:Mulla Y;Avellaneda MJ;Roland A;Baldauf L;Jung W;Kim T;Tans SJ;Koenderink GH
- 通讯作者:Koenderink GH
Role of actin filaments and cis binding in cadherin clustering and patterning.
肌动蛋白丝和顺式结合在钙粘蛋白聚类和图案中的作用。
- DOI:10.1371/journal.pcbi.1010257
- 发表时间:2022-07
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
Entropy production rate is maximized in non-contractile actomyosin.
非收缩性肌动球蛋白的熵产生率最大化。
- DOI:10.1038/s41467-018-07413-5
- 发表时间:2018
- 期刊:
- 影响因子:16.6
- 作者:Seara,DanielS;Yadav,Vikrant;Linsmeier,Ian;Tabatabai,APasha;Oakes,PatrickW;Tabei,SMAli;Banerjee,Shiladitya;Murrell,MichaelP
- 通讯作者:Murrell,MichaelP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taeyoon Kim其他文献
Taeyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taeyoon Kim', 18)}}的其他基金
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
9427516 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10001072 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10245019 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 10万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 10万 - 项目类别:














{{item.name}}会员




