Mitosis in Confining Microenvironments
限制性微环境中的有丝分裂
基本信息
- 批准号:10719384
- 负责人:
- 金额:$ 26.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultAlginatesAutomobile DrivingBehaviorBiocompatible MaterialsBiological ProcessCRISPR/Cas technologyCell Culture TechniquesCell CycleCell LineCell MobilityCell SeparationCell divisionCell membraneCell-Matrix JunctionCellsCharacteristicsCollagenComplexComputer ModelsCultured CellsDevelopmentDiseaseElasticityEmbryoEngineeringExperimental ModelsExtracellular MatrixFeedbackG1 PhaseGenerationsGoalsGrowthHomeostasisHumanIon ChannelKnock-outKnowledgeLocationMalignant NeoplasmsMammalian CellMeasurementMechanicsMediatingMissionMitosisMitoticModelingMorphologyMovementMyosin ATPaseNatural regenerationOsmotic PressurePhysical ExaminationPhysiologicalProcessPropertyPublic HealthRelaxationResearchResearch Project GrantsRoleStressTestingUnited States National Institutes of Healthcell growthcell osmotic pressurecell typedefined contributiondisabilityexperimental studyextracellularforce feedbackinnovationinsightnovelnovel therapeuticsregenerativethree dimensional cell culturetumorviscoelasticitywound healing
项目摘要
PROJECT SUMMARY
Cell division underlies the development of humans from embryos to full-grown adults, regenerative processes
such as wound healing, and diseases such as cancer. While much is known about the intracellular aspects of
mammalian cell division, less is known about the extracellular aspects of cell division. In many physiological
contexts, cells divide in mechanically confining microenvironments, including dense extracellular matrices
(ECMs) and growing tumors. Cell division requires extensive morphological changes, including significant growth
during the G1 phase of the cell cycle and elongation along the mitotic axis during mitosis, or mitotic elongation.
Both growth and mitotic elongation are strictly required for successful cell division. A mechanically confining
microenvironment provides a physical barrier to both cell growth and mitotic elongation, and cells must overcome
this confinement for successful cell division. Our recent studies have shown that single dividing cells in three-
dimensional (3D) matrices generate protrusive forces along the mitotic axis to drive mitotic elongation via a
combination of interpolar spindle elongation and cytokinetic ring contraction. We have also found that cell growth
during the G1 phase is mediated by outward force generation. However, it remains unclear how these forces
and their underlying mechanisms adapt to confining microenvironments with a wide range of stiffness and
viscoelasticity. In this project, we will determine how cells tune extracellular forces to sustain cell division in highly
confining microenvironments, using a powerful combination of rigorous agent-based modeling and experiments
with engineered biomaterials for 3D cell culture. We hypothesize that in microenvironments with increased
confinement, i) protrusive activity increases to make space and activate mechanosensitive channels for driving
G1 phase cell growth via increased osmotic pressure, and ii) enhanced cytokinetic ring contraction drives mitotic
elongation. The main hypothesis will be tested by pursuing the following three aims: (1) Determine how mitotic
elongation of isolated cells within highly confining microenvironments is accomplished via a novel force feedback
mechanism; (2) Define how isolated cells achieve G1 phase cell growth in highly confining microenvironments;
and (3) Establish how growth and mitotic elongation of cells in growing spheroids induce overall expansion of
spheroids in highly confining microenvironments. The proposed research project is significant because it will
reveal how cells modulate their force generation, to drive cell growth and mitotic elongation for cell division in
physiologically relevant microenvironments, and also elucidate the role of matrix remodeling and multicellular
cooperation in cell division. The approach is innovative because of i) the development and use of agent-based
models that can rigorously capture the most important aspects of cell growth, mitotic elongation, and confining
microenvironments with complex rheological properties, ii) the focus on extracellular aspects of cell division, iii)
the role of matrix viscoelasticity in cell division, and iv) the examination of the physical basis for spheroid growth.
项目总结
细胞分裂是人类从胚胎发育到成熟成人的基础,也是再生过程
例如伤口愈合,以及癌症等疾病。虽然对细胞内方面的了解很多,但
关于哺乳动物细胞分裂,人们对细胞外方面的细胞分裂知之甚少。在许多生理上
在这种情况下,细胞在机械限制的微环境中分裂,包括密集的细胞外基质
(ECM)和生长中的肿瘤。细胞分裂需要广泛的形态变化,包括显著的生长
在细胞周期的G1期,以及有丝分裂期间沿有丝分裂轴的伸长,或有丝分裂伸长。
生长和有丝分裂的伸长都是细胞成功分裂的严格要求。一种机械的限制
微环境为细胞生长和有丝分裂伸长提供了物理障碍,细胞必须克服
这种限制是细胞分裂成功的关键。我们最近的研究表明,三个细胞中的单个分裂细胞-
三维(3D)矩阵产生沿有丝分裂轴的突出力,以通过
极间纺锤体伸长和细胞动环收缩相结合。我们还发现,细胞的生长
在G1阶段,外向力的产生是调节的。然而,目前还不清楚这些部队是如何
它们的基本机制适应于具有大范围刚性和
粘弹性。在这个项目中,我们将确定细胞如何调节细胞外力以维持高度的细胞分裂。
限制微环境,使用严格的基于代理的建模和实验的强大组合
使用用于3D细胞培养的工程生物材料。我们假设在微环境中
限制,i)突出活动增加以腾出空间并激活用于驾驶的机械敏感通道
G1期细胞通过增加渗透压而生长,以及ii)增强的细胞动态环收缩推动有丝分裂
伸长率。主要假设将通过追求以下三个目标来检验:(1)确定有丝分裂如何
在高度受限的微环境中,隔离细胞的伸长是通过一种新的力反馈实现的
机制;(2)确定分离的细胞如何在高度受限的微环境中实现G1期细胞生长;
以及(3)确定生长中的球体中的细胞的生长和有丝分裂伸长是如何诱导整体扩张的
高度受限的微环境中的球体。拟议的研究项目意义重大,因为它将
揭示细胞如何调节它们的力量产生,以推动细胞生长和细胞分裂的有丝分裂伸长
生理相关的微环境,并阐明基质重塑和多细胞的作用
在细胞分裂方面的合作。这种方法是创新的,因为i)基于代理的开发和使用
可以严格捕捉细胞生长、有丝分裂延长和限制的最重要方面的模型
具有复杂流变性的微环境,II)细胞分裂的细胞外方面的重点,III)
基质粘弹性在细胞分裂中的作用,以及iv)球体生长的物理基础的检查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taeyoon Kim其他文献
Taeyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taeyoon Kim', 18)}}的其他基金
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10388935 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
9427516 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10001072 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10245019 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 26.21万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 26.21万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 26.21万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 26.21万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 26.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 26.21万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 26.21万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 26.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 26.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 26.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




