Mitosis in Confining Microenvironments
限制性微环境中的有丝分裂
基本信息
- 批准号:10719384
- 负责人:
- 金额:$ 26.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultAlginatesAutomobile DrivingBehaviorBiocompatible MaterialsBiological ProcessCRISPR/Cas technologyCell Culture TechniquesCell CycleCell LineCell MobilityCell SeparationCell divisionCell membraneCell-Matrix JunctionCellsCharacteristicsCollagenComplexComputer ModelsCultured CellsDevelopmentDiseaseElasticityEmbryoEngineeringExperimental ModelsExtracellular MatrixFeedbackG1 PhaseGenerationsGoalsGrowthHomeostasisHumanIon ChannelKnock-outKnowledgeLocationMalignant NeoplasmsMammalian CellMeasurementMechanicsMediatingMissionMitosisMitoticModelingMorphologyMovementMyosin ATPaseNatural regenerationOsmotic PressurePhysical ExaminationPhysiologicalProcessPropertyPublic HealthRelaxationResearchResearch Project GrantsRoleStressTestingUnited States National Institutes of Healthcell growthcell osmotic pressurecell typedefined contributiondisabilityexperimental studyextracellularforce feedbackinnovationinsightnovelnovel therapeuticsregenerativethree dimensional cell culturetumorviscoelasticitywound healing
项目摘要
PROJECT SUMMARY
Cell division underlies the development of humans from embryos to full-grown adults, regenerative processes
such as wound healing, and diseases such as cancer. While much is known about the intracellular aspects of
mammalian cell division, less is known about the extracellular aspects of cell division. In many physiological
contexts, cells divide in mechanically confining microenvironments, including dense extracellular matrices
(ECMs) and growing tumors. Cell division requires extensive morphological changes, including significant growth
during the G1 phase of the cell cycle and elongation along the mitotic axis during mitosis, or mitotic elongation.
Both growth and mitotic elongation are strictly required for successful cell division. A mechanically confining
microenvironment provides a physical barrier to both cell growth and mitotic elongation, and cells must overcome
this confinement for successful cell division. Our recent studies have shown that single dividing cells in three-
dimensional (3D) matrices generate protrusive forces along the mitotic axis to drive mitotic elongation via a
combination of interpolar spindle elongation and cytokinetic ring contraction. We have also found that cell growth
during the G1 phase is mediated by outward force generation. However, it remains unclear how these forces
and their underlying mechanisms adapt to confining microenvironments with a wide range of stiffness and
viscoelasticity. In this project, we will determine how cells tune extracellular forces to sustain cell division in highly
confining microenvironments, using a powerful combination of rigorous agent-based modeling and experiments
with engineered biomaterials for 3D cell culture. We hypothesize that in microenvironments with increased
confinement, i) protrusive activity increases to make space and activate mechanosensitive channels for driving
G1 phase cell growth via increased osmotic pressure, and ii) enhanced cytokinetic ring contraction drives mitotic
elongation. The main hypothesis will be tested by pursuing the following three aims: (1) Determine how mitotic
elongation of isolated cells within highly confining microenvironments is accomplished via a novel force feedback
mechanism; (2) Define how isolated cells achieve G1 phase cell growth in highly confining microenvironments;
and (3) Establish how growth and mitotic elongation of cells in growing spheroids induce overall expansion of
spheroids in highly confining microenvironments. The proposed research project is significant because it will
reveal how cells modulate their force generation, to drive cell growth and mitotic elongation for cell division in
physiologically relevant microenvironments, and also elucidate the role of matrix remodeling and multicellular
cooperation in cell division. The approach is innovative because of i) the development and use of agent-based
models that can rigorously capture the most important aspects of cell growth, mitotic elongation, and confining
microenvironments with complex rheological properties, ii) the focus on extracellular aspects of cell division, iii)
the role of matrix viscoelasticity in cell division, and iv) the examination of the physical basis for spheroid growth.
项目摘要
细胞分裂是从胚胎到成年成年人的人类发展的基础
例如伤口愈合和癌症等疾病。虽然对细胞内方面有很多了解
哺乳动物细胞分裂,对细胞分裂的细胞外方面知之甚少。在许多生理学中
环境,细胞在机械限制微环境中分裂,包括密集的细胞外矩阵
(ECM)和肿瘤的生长。细胞分裂需要广泛的形态变化,包括显着增长
在细胞周期的G1阶段和有丝分裂或有丝分裂伸长的有丝分裂轴的伸长率。
成功的细胞分裂是严格必需的生长和有丝分裂伸长。机械限制
微环境为细胞生长和有丝分裂伸长提供了物理障碍,并且细胞必须克服
这种对成功细胞分裂的限制。我们最近的研究表明,单个分裂细胞在三个
尺寸(3D)矩阵沿有丝分裂轴产生突出力,以通过A驱动有丝分裂伸长
近极纺锤伸长和细胞力学环收缩的组合。我们还发现细胞生长
在G1期间,外部力的产生介导。但是,尚不清楚这些力量如何
以及它们的基本机制适应以各种刚度限制微环境
粘弹性。在这个项目中,我们将确定细胞如何调整细胞外力以维持高度的细胞分裂
限制微环境,使用严格的基于代理的建模和实验的强大组合
具有用于3D细胞培养的工程生物材料。我们假设在微环境中随着增加
限制,i)突出活动增加以使空间和激活驾驶机械敏感的通道
G1相细胞通过增加的渗透压生长,ii)增强的细胞力学环收缩驱动有丝分裂
伸长。主要假设将通过追求以下三个目标来检验:(1)确定有丝分裂的方式
在高度狭窄的微环境中,孤立的细胞的伸长是通过新的力反馈完成的
机制; (2)定义分离的细胞如何在高度狭窄的微环境中实现G1相细胞的生长;
(3)确定细胞在生长球体中的生长和有丝分裂伸长如何引起整体膨胀
在高度狭窄的微环境中的球体。拟议的研究项目很重要,因为它将
揭示细胞如何调节其力产生,以驱动细胞生长和细胞分裂的有丝分裂伸长
生理上相关的微环境,还阐明了基质重塑和多细胞的作用
细胞分裂的合作。这种方法具有创新性,因为i)开发和使用基于代理的
可以严格捕获细胞生长,有丝分裂伸长和限制的最重要方面的模型
具有复杂流变特性的微环境,ii)关注细胞外部的细胞外方面,iii)
基质粘弹性在细胞分裂中的作用,以及iv)素质生长的物理基础的检查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taeyoon Kim其他文献
Taeyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taeyoon Kim', 18)}}的其他基金
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10388935 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
9427516 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10001072 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
- 批准号:
10245019 - 财政年份:2017
- 资助金额:
$ 26.21万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating mechanical regulation of nephrogenesis using viscoelastic biomaterials and kidney organoids
使用粘弹性生物材料和肾类器官研究肾发生的机械调节
- 批准号:
10536817 - 财政年份:2022
- 资助金额:
$ 26.21万 - 项目类别:
Investigating mechanical regulation of nephrogenesis using viscoelastic biomaterials and kidney organoids
使用粘弹性生物材料和肾类器官研究肾发生的机械调节
- 批准号:
10705067 - 财政年份:2022
- 资助金额:
$ 26.21万 - 项目类别:
Engineering microscale hydrogel deposition to direct single stem cell differentiation
工程微型水凝胶沉积指导单干细胞分化
- 批准号:
10370437 - 财政年份:2021
- 资助金额:
$ 26.21万 - 项目类别:
Engineering microscale hydrogel deposition to direct single stem cell differentiation
工程微型水凝胶沉积指导单干细胞分化
- 批准号:
10181469 - 财政年份:2021
- 资助金额:
$ 26.21万 - 项目类别:
Engineering microscale hydrogel deposition to direct single stem cell differentiation
工程微型水凝胶沉积指导单干细胞分化
- 批准号:
10548197 - 财政年份:2021
- 资助金额:
$ 26.21万 - 项目类别: