Mitosis in Confining Microenvironments

限制性微环境中的有丝分裂

基本信息

  • 批准号:
    10719384
  • 负责人:
  • 金额:
    $ 26.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-25 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Cell division underlies the development of humans from embryos to full-grown adults, regenerative processes such as wound healing, and diseases such as cancer. While much is known about the intracellular aspects of mammalian cell division, less is known about the extracellular aspects of cell division. In many physiological contexts, cells divide in mechanically confining microenvironments, including dense extracellular matrices (ECMs) and growing tumors. Cell division requires extensive morphological changes, including significant growth during the G1 phase of the cell cycle and elongation along the mitotic axis during mitosis, or mitotic elongation. Both growth and mitotic elongation are strictly required for successful cell division. A mechanically confining microenvironment provides a physical barrier to both cell growth and mitotic elongation, and cells must overcome this confinement for successful cell division. Our recent studies have shown that single dividing cells in three- dimensional (3D) matrices generate protrusive forces along the mitotic axis to drive mitotic elongation via a combination of interpolar spindle elongation and cytokinetic ring contraction. We have also found that cell growth during the G1 phase is mediated by outward force generation. However, it remains unclear how these forces and their underlying mechanisms adapt to confining microenvironments with a wide range of stiffness and viscoelasticity. In this project, we will determine how cells tune extracellular forces to sustain cell division in highly confining microenvironments, using a powerful combination of rigorous agent-based modeling and experiments with engineered biomaterials for 3D cell culture. We hypothesize that in microenvironments with increased confinement, i) protrusive activity increases to make space and activate mechanosensitive channels for driving G1 phase cell growth via increased osmotic pressure, and ii) enhanced cytokinetic ring contraction drives mitotic elongation. The main hypothesis will be tested by pursuing the following three aims: (1) Determine how mitotic elongation of isolated cells within highly confining microenvironments is accomplished via a novel force feedback mechanism; (2) Define how isolated cells achieve G1 phase cell growth in highly confining microenvironments; and (3) Establish how growth and mitotic elongation of cells in growing spheroids induce overall expansion of spheroids in highly confining microenvironments. The proposed research project is significant because it will reveal how cells modulate their force generation, to drive cell growth and mitotic elongation for cell division in physiologically relevant microenvironments, and also elucidate the role of matrix remodeling and multicellular cooperation in cell division. The approach is innovative because of i) the development and use of agent-based models that can rigorously capture the most important aspects of cell growth, mitotic elongation, and confining microenvironments with complex rheological properties, ii) the focus on extracellular aspects of cell division, iii) the role of matrix viscoelasticity in cell division, and iv) the examination of the physical basis for spheroid growth.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taeyoon Kim其他文献

Taeyoon Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taeyoon Kim', 18)}}的其他基金

Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
  • 批准号:
    10388935
  • 财政年份:
    2017
  • 资助金额:
    $ 26.21万
  • 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
  • 批准号:
    9427516
  • 财政年份:
    2017
  • 资助金额:
    $ 26.21万
  • 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
  • 批准号:
    10001072
  • 财政年份:
    2017
  • 资助金额:
    $ 26.21万
  • 项目类别:
Universal Roles of Force Generation and Transmission in Biological Systems
生物系统中力的产生和传递的普遍作用
  • 批准号:
    10245019
  • 财政年份:
    2017
  • 资助金额:
    $ 26.21万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了