Cochlear mechanics in the mouse
小鼠的耳蜗力学
基本信息
- 批准号:10394238
- 负责人:
- 金额:$ 62.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAirAnatomyAnesthesia proceduresAnimalsArousalAuditoryAuditory systemBackBasic ScienceBasilar MembraneBiomechanicsBiomedical EngineeringBiophysical ProcessBrainCaliberCharacteristicsClinicalCochleaCochlear ductComplexDataDependenceEnvironmentExternal auditory canalFrequenciesHair CellsHeadHearingHearing AidsImageLeftMammalsMeasurementMeasuresMechanicsMedialMediatingMotionMusOptical Coherence TomographyOpticsOrgan of CortiOuter Hair CellsPainlessPhysiologyProcessProductionPupilReflex actionResearch Project GrantsResolutionRoleSpeechStructureSupporting CellSystemTechnologyTestingTimeTravelWalkingWild Type MouseWorkauditory stimulusawakebonecapsuledesignexperimental studyhearing impairmentin vivoindexinginnovationotoacoustic emissionpeerpressureresponsesoundstemtectorial membranetreadmillvectorvibrationwalking speed
项目摘要
Project Summary/Abstract
Sound pressure produces force across the mammalian cochlear partition, ultimately creating a vibratory
traveling wave that propagates longitudinally up the cochlear duct. The key feature distinguishing this process
from the non-mammalian cochlea is amplification, whereby forces produced by thousands of outer hair cells
(OHCs) sharpen and amplify the traveling wave. Our overarching objective is to understand how the complex
biomechanics of the 3D multi-cellular and acellular arrangement that form the organ of Corti work together to
create cochlear amplification. Specifically, we will determine how this process, which stems from the broadly-
tuned basilar membrane, creates sharp frequency tuning and high sensitivity. This question is significant on a
basic science level because these biophysical processes underlie the ability to hear sounds just above the
Brownian motion of molecules in air with an exquisite frequency resolution. This question remains unsolved
and is clinically important because hearing loss is typically due to loss of cochlear amplification. Our central
hypothesis is that, beyond the broad tuning provided by basilar membrane mechanics, the forces produced by
OHCs are also tuned by additional mechanisms. In aim 1, we will use 3D Volumetric Optical Coherence
Tomography and Vibrometry (VOCTV) in mice to test whether the forces produced by OHCs are tuned by the
mechanics of the supporting cells and acellular structures that form the organ of Corti. In aim 2, we will use 1D
VOCTV in awake behaving mice to test whether cochlear amplification is modulated by brain state via the
medial olivocochlear efferent (MOC) system by varying OHC force production. Together, these data will be
interpreted so as to test our hypothesis. If our hypothesis is true, sharply-tuned differential motion within the
organ of Corti is necessary to generate the sensitivity and sharp tuning of the mammalian cochlea and brain
state modulates cochlear amplification via the MOC efferent system.
项目概要/摘要
声压产生穿过哺乳动物耳蜗分区的力,最终产生振动
沿耳蜗管纵向传播的行波。区分此过程的关键特征
来自非哺乳动物耳蜗的放大作用是由数千个外毛细胞产生的力
(OHC) 锐化并放大行波。我们的首要目标是了解复杂的
构成柯蒂氏器官的 3D 多细胞和非细胞排列的生物力学共同作用,
产生耳蜗放大。具体来说,我们将确定这个过程如何产生,它源于广泛的-
调谐基底膜,产生尖锐的频率调谐和高灵敏度。这个问题对于一个人来说很重要
基础科学水平,因为这些生物物理过程是听到略高于声音的能力的基础
空气中分子的布朗运动具有精确的频率分辨率。这个问题仍然悬而未决
这在临床上很重要,因为听力损失通常是由于耳蜗放大功能丧失所致。我们的中央
假设是,除了基底膜力学提供的广泛调节之外,由
OHC 还可以通过其他机制进行调整。在目标 1 中,我们将使用 3D 体积光学相干
在小鼠中进行断层扫描和振动测量 (VOCTV),以测试 OHC 产生的力是否由
形成柯蒂氏器的支持细胞和非细胞结构的力学。在目标 2 中,我们将使用 1D
VOCTV 在清醒行为小鼠中测试耳蜗放大是否通过大脑状态调节
内侧橄榄耳蜗传出 (MOC) 系统通过不同的 OHC 力产生。这些数据一起将
解释以检验我们的假设。如果我们的假设成立,那么在
柯蒂氏器对于哺乳动物耳蜗和大脑的敏感性和敏锐调节是必需的
状态通过 MOC 传出系统调节耳蜗放大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John S Oghalai其他文献
John S Oghalai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John S Oghalai', 18)}}的其他基金
Otolaryngology Clinician-Scientist Training Program
耳鼻喉科临床医生科学家培训计划
- 批准号:
10649406 - 财政年份:2022
- 资助金额:
$ 62.33万 - 项目类别:
Otolaryngology Clinician-Scientist Training Program
耳鼻喉科临床医生科学家培训计划
- 批准号:
10291583 - 财政年份:2022
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪音或爆炸创伤后耳蜗突触病的机制
- 批准号:
10307056 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪音或爆炸创伤后耳蜗突触病的机制
- 批准号:
10053337 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪声或爆炸损伤后耳蜗突触病的机制
- 批准号:
10540702 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪声或爆炸损伤后耳蜗突触病的机制
- 批准号:
9887606 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Optical coherence tomography for 3D measures of cochlear mechanics in vivo
用于体内耳蜗力学 3D 测量的光学相干断层扫描
- 批准号:
9454168 - 财政年份:2015
- 资助金额:
$ 62.33万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 62.33万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 62.33万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 62.33万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 62.33万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 62.33万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 62.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 62.33万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




