Characterization of novel insulin resistance genes by gene editing, high-throughput phenotyping and in vivo studies
通过基因编辑、高通量表型分析和体内研究表征新型胰岛素抵抗基因
基本信息
- 批准号:10395964
- 负责人:
- 金额:$ 61.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdipocytesBiological ModelsCRISPR-mediated transcriptional activationCandidate Disease GeneCardiometabolic DiseaseCardiovascular DiseasesCell modelCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesDataDevelopmentDrug TargetingEatingEnergy MetabolismFatty acid glycerol estersFunctional disorderGenesGeneticGenetic DeterminismGenetic TranscriptionHigh Fat DietHistopathologyHumanHuman GeneticsIn VitroInsulinInsulin ResistanceKidneyKnockout MiceLeadLipidsLipolysisLiverMediatingMethodsMitochondriaMolecularMusMuscle FibersNon-Insulin-Dependent Diabetes MellitusPathway interactionsPhenotypePhysical activityPhysiologicalPrevalencePublic HealthRisk FactorsSeriesTissuesWild Type MouseWorkadipocyte biologybasecardiovascular risk factorcausal variantcell typedifferential expressiondrug developmentexperimental studyfatty acid oxidationfeedinggenome wide association studyglucose toleranceglucose uptakein vivoinnovationinsightinsulin signalinginsulin toleranceknock-downknockout genelipid biosynthesismetabolic phenotypemouse modelnon-alcoholic fatty liver diseasenovelnovel therapeuticspreventquantumresistance geneside effectsingle-cell RNA sequencingtraittranscriptometranscriptomicstranslational framework
项目摘要
PROJECT SUMMARY/ABSTRACT
Dramatic increases in insulin resistance (IR) prevalence are expected in the U.S. and throughout the world in
coming years. Since IR is an important risk factor for cardiovascular disease, discovery of more efficient ways of
preventing and treating this condition would have a huge public health impact.
Over the past decades, development of new drugs aimed at preventing cardiometabolic disease has slowed
down substantially, but recent advances in human genetics offer new exciting opportunities for drug
development. Genome-wide associations studies (GWAS) have discovered >150 loci associated with IR and
closely related traits over the past decade; but for the vast majority of these, the causal gene has not been
definitely identified and the mechanisms leading to IR are unknown.
We have performed colocalization analyses to prioritize 50 plausible candidate genes from 164 GWAS loci
associated with IR-related traits, and we now aim to establish and characterize genes causally associated with
IR using a rigorous series of experiments combining CRISPR-based gene perturbation with single-cell RNA
sequencing and detailed phenotyping in human adipocytes, skeletal myocytes and mouse models.
In Aim 1, we will perform CROP-seq – CRISPR-based transcriptional interference (CRISPRi) followed by single-
cell RNA-seq (scRNA-seq) – in human adipocytes to characterize differentially expressed genes and pathways
after knockdown of 50 genes selected based on colocalization analyses.
In Aim 2, we will evaluate metabolic phenotypes, such as glucose uptake, lipolysis, insulin signaling,
adipogenesis, mitochondrial function, fatty acid oxidation, and metabolite profiles in human adipocytes and
skeletal myocytes after CRISPRi knockdown of 25 genes, guided by expression profiles from aim 1.
In Aim 3, we will create and breed knockout mouse models for three IR-related genes, and then compare wildtype
and knockout mice with regards to fat distribution, glucose and insulin tolerance, energy expenditure, physical
activity, food intake, lipid profiles, kidney and liver panels, cellular transcriptome, and histopathology of different
tissues in mice on chow and after high-fat feeding.
By combining a range of innovative methods including high-throughput gene perturbations followed by single
cell transcriptomics, in vitro and in vivo experiments to characterize loci established using human genetics, we
expect to establish causal genes and mechanisms of action for novel genes involved in development of IR. This
is a first important step towards development of new drugs to address the huge and increasing unmet need
posed by IR. Our proposal integrates a range of innovative approaches in different model systems providing a
translational framework that is likely to lead to new important insights into insulin resistance, type 2 diabetes and
cardiovascular disease which could have a huge public health impact.
项目摘要/摘要
美国和世界各地的胰岛素抵抗(IR)患病率预计将在#年大幅上升。
未来几年。由于IR是心血管疾病的重要危险因素,因此发现更有效的治疗方法
预防和治疗这种疾病将对公共健康产生巨大影响。
在过去的几十年里,旨在预防心脏代谢性疾病的新药的开发已经放缓
大幅下降,但人类遗传学的最新进展为药物提供了新的令人兴奋的机会
发展。全基因组关联研究发现了150个与胰岛素抵抗和糖尿病相关的基因座。
在过去的十年里密切相关的特征;但对于这些特征中的绝大多数,因果基因并没有
已明确确定,导致IR的机制尚不清楚。
我们进行了共定位分析,确定了164个GWAS基因座中50个可信的候选基因的优先顺序
与IR相关的特征相关,我们现在的目标是建立和表征与IR相关的基因
IR使用基于CRISPR的基因扰动和单细胞RNA相结合的一系列严格的实验
人类脂肪细胞、骨骼肌细胞和小鼠模型的测序和详细表型。
在目标1中,我们将进行基于CRISPR的作物序列转录干扰(CRISPRi),然后进行单链干扰。
人脂肪细胞中的细胞RNA-seq(scRNA-seq)-研究差异表达的基因和途径
在基于共定位分析选择的50个基因被敲除之后。
在目标2中,我们将评估代谢表型,如葡萄糖摄取、脂肪分解、胰岛素信号转导、
人脂肪细胞的成脂作用、线粒体功能、脂肪酸氧化和代谢物谱
在目标1的表达谱指导下,CRISPRi敲除25个基因后的骨骼肌细胞。
在目标3中,我们将建立和培育三个IR相关基因的敲除小鼠模型,然后比较野生型
和基因敲除小鼠的脂肪分布、葡萄糖和胰岛素耐量、能量消耗、身体状况
活动,食物摄入量,脂谱,肾脏和肝脏面板,细胞转录组,和组织病理学
给小鼠喂食高脂饲料和喂食后的组织。
通过结合一系列创新方法,包括高通量基因干扰和单一
细胞转录学,体外和体内实验,以确定利用人类遗传学建立的基因座
期望建立参与IR发生发展的新基因的致病基因和作用机制。这
是朝着开发新药迈出的重要的第一步,以解决巨大且日益增长的未得到满足的需求
由IR构成。我们的建议在不同的模型系统中集成了一系列创新方法,提供了
翻译框架可能导致对胰岛素抵抗、2型糖尿病和
心血管疾病,这可能会对公众健康产生巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Wiley Knowles其他文献
Joshua Wiley Knowles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Wiley Knowles', 18)}}的其他基金
Mechanisms of NAT2 Regulation of Insulin Resistance and Mitochondrial Dysfunction
NAT2调节胰岛素抵抗和线粒体功能障碍的机制
- 批准号:
10665620 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
Mechanisms of NAT2 Regulation of Insulin Resistance and Mitochondrial Dysfunction
NAT2调节胰岛素抵抗和线粒体功能障碍的机制
- 批准号:
10213015 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
Mechanisms of NAT2 Regulation of Insulin Resistance and Mitochondrial Dysfunction
NAT2调节胰岛素抵抗和线粒体功能障碍的机制
- 批准号:
9816208 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
Characterization of novel insulin resistance genes by gene editing, high-throughput phenotyping and in vivo studies
通过基因编辑、高通量表型分析和体内研究表征新型胰岛素抵抗基因
- 批准号:
10624240 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
Mechanisms of NAT2 Regulation of Insulin Resistance and Mitochondrial Dysfunction
NAT2调节胰岛素抵抗和线粒体功能障碍的机制
- 批准号:
10459251 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
相似国自然基金
支链氨基酸代谢紊乱调控“Adipocytes - Macrophages Crosstalk”诱发2型糖尿病脂肪组织功能和结构障碍的作用及机制
- 批准号:81970721
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
New development of cellular regeneration therapy in jaw bone using stem cells derived from adipocytes jaw bone
利用颌骨脂肪细胞来源的干细胞进行颌骨细胞再生治疗的新进展
- 批准号:
23K16058 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel mechanism of insulin resistance mediated by uric acid metabolism in adipocytes
脂肪细胞尿酸代谢介导胰岛素抵抗的新机制
- 批准号:
23K10969 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Development of adipocytes for gene therapy that avoids cellular stress due to overexpression of therapeutic proteins
开发用于基因治疗的脂肪细胞,避免因治疗蛋白过度表达而造成的细胞应激
- 批准号:
23H03065 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of bitter taste receptors in adipocytes and hepatocytes
脂肪细胞和肝细胞中苦味受体的功能分析
- 批准号:
23K05107 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of mechanisms for conversion of adipocytes to cancer-associated fibroblasts in osteosarcoma microenvironment
阐明骨肉瘤微环境中脂肪细胞转化为癌症相关成纤维细胞的机制
- 批准号:
23K19518 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on UCP-1 independent metabolic regulation by brown adipocytes
棕色脂肪细胞对UCP-1独立代谢调节的研究
- 批准号:
23K18303 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKT cell activation depend on lipid accumulation in adipocytes
NKT 细胞的激活取决于脂肪细胞中的脂质积累
- 批准号:
22K08679 - 财政年份:2022
- 资助金额:
$ 61.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)