Computational design of new protein structures and interactions
新蛋白质结构和相互作用的计算设计
基本信息
- 批准号:10396457
- 负责人:
- 金额:$ 34.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmino AcidsBehaviorBenchmarkingBinding ProteinsBinding SitesBiologicalBiological ProcessBiologyBiomedical EngineeringBiomedical ResearchBiosensorBiotechnologyCell physiologyCellsChemicalsCombinatorial OptimizationCommunitiesComplexComputing MethodologiesCrystallizationCustomDevelopmentDimerizationDiseaseElementsEngineeringEnvironment DesignFamilyFoundationsGene ExpressionGeometryHealthIndustrializationIntuitionKnowledgeLengthLigand BindingLigandsManualsMedicineMethodologyMethodsMolecularMolecular ConformationNatureProductionProtein EngineeringProtein FragmentProteinsRegulationResearchScaffolding ProteinSideSignal TransductionSignaling MoleculeSignaling ProteinSiteStructureSystemTechnologyTestingVariantVertebral columnWorkcancer therapycell behaviordata repositorydesignimprovedinnovationmetabolic engineeringneurotensin mimic 2novel strategiesnovel therapeuticspractical applicationprotein functionprotein structureresponsescaffoldsensorsmall moleculetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Computational design has immense potential to create new protein functions with applications in biotechnology,
biology, and medicine. However, despite exciting progress in designing proteins with de novo structures, our
ability to design proteins with new functions lags behind. A key reason for this discrepancy is that function
typically requires protein geometries that deviate from the “idealized” folds of de novo designed structures and
that are hence more difficult to design. The long-term objective of our work is to advance computational design
to make predictive design of more complex functions possible. The specific objective of this proposal is to
address the generally unsolved problem of designing proteins that bind new small molecule ligands. A particular
application is the design of new sensor/actuators: proteins that can detect a user-defined small molecule signal
and trigger a biological response (such as protein signaling or gene expression). Significant applications of
such sensor/actuators include maximizing production of industrially valuable chemicals in metabolic engineering,
creating precise tools for dissecting biological processes in cell signaling, and achieving tight regulation in
emerging cancer therapies. Our work in the prior project period has advanced methods for binding site design
and applied them to engineer the first computationally designed chemically-induced protein dimerization system,
which senses and responds to a new ligand in living cells; a crystal structure confirmed the accuracy of the de
novo designed binding site. Despite this key progress, there are significant barriers to generalize the approach.
The first step in engineering new ligand binding sites is generally to identify desired binding site geometries
(constellations of amino acid side chains coordinating the ligand). The second step is then to place those
geometries into a suitable protein termed “scaffold”. This approach is critically limited by available geometries,
both for binding sites and scaffolds to accommodate them. To address these problems, we propose two key
methodological innovations: Aim 1 will establish and experimentally test a new computational method to
generate millions of possible binding site geometries de novo that can be built into proteins. Aim 2 will develop
and test a new computational approach to build “de novo fold families” (sets of custom-shaped de novo designed
proteins) by systematically varying the geometries of structural elements within a given fold topology, to be used
as scaffolds. Feasibility is supported by preliminary results for both aims; we have designed new binding sites
(prior period), and have solved structures of 3 de novo designed proteins with the same fold but distinct
geometries. The proposed studies innovate in creating both new methods and new molecules that expand
designable structures and functions and overcome problems with current approaches limited by available
geometries. Ultimately, these studies will lead to advanced computational design methods that we will make
freely available, new knowledge on strengths and limitations of these methods to drive further developments,
and new tools to control cellular behavior in biological engineering and to probe basic and disease biology.
项目总结/摘要
计算设计具有创造新蛋白质功能的巨大潜力,可应用于生物技术,
生物学和医学。然而,尽管在设计具有从头结构的蛋白质方面取得了令人兴奋的进展,
设计具有新功能的蛋白质的能力落后。这种差异的一个关键原因是,
通常需要偏离从头设计结构的“理想化”折叠的蛋白质几何形状,
因此更难设计。我们工作的长期目标是推进计算设计
使更复杂功能的预测设计成为可能。这项建议的具体目标是
解决了设计结合新的小分子配体的蛋白质的通常未解决的问题。特定
应用是设计新的传感器/执行器:可以检测用户定义的小分子信号的蛋白质
并触发生物反应(如蛋白质信号或基因表达)。重要应用
这样的传感器/致动器包括在代谢工程中最大限度地生产工业上有价值的化学品,
创造了精确的工具,用于解剖细胞信号传导中的生物过程,并实现了细胞信号传导的严格调控。
新兴的癌症疗法。我们在前期的工作中有着先进的装订场地设计方法
并将其应用于第一个计算机设计的化学诱导蛋白质二聚化系统,
它能感知活细胞中的一种新配体并对其作出反应;晶体结构证实了这种检测的准确性。
novo设计的结合位点。尽管取得了这一关键进展,但推广这一方法仍存在重大障碍。
工程化新配体结合位点的第一步通常是鉴定所需的结合位点几何形状
(配位配体的氨基酸侧链的星座)。第二步是将这些
几何形状转变成合适的蛋白质,称为“支架”。这种方法受到可用几何形状的严重限制,
用于结合位点和容纳它们的支架。为了解决这些问题,我们提出了两个关键
方法创新:目标1将建立并实验测试一种新的计算方法,
从头产生数百万种可能的结合位点几何形状,可以构建到蛋白质中。Aim 2将开发
并测试一种新的计算方法,以建立“从头折叠家庭”(一套定制形状的从头设计,
通过系统地改变给定折叠拓扑结构内的结构元件的几何形状,
作为脚手架。两个目标的初步结果支持可行性;我们设计了新的结合位点
(前期),并解决了3个从头设计的蛋白质的结构,具有相同的折叠,但不同
几何学拟议中的研究在创造新方法和新分子方面进行了创新,
可设计的结构和功能,并克服现有方法的问题,
几何学最终,这些研究将导致先进的计算设计方法,我们将使
免费提供关于这些方法的优势和局限性的新知识,以推动进一步发展,
以及在生物工程中控制细胞行为和探索基础和疾病生物学的新工具。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advances in the Computational Design of Small-Molecule-Controlled Protein-Based Circuits for Synthetic Biology.
- DOI:10.1109/jproc.2022.3157898
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
De novo protein fold families expand the designable ligand binding site space.
从头蛋白折叠族扩展了可设计的配体结合位点空间。
- DOI:10.1371/journal.pcbi.1009620
- 发表时间:2021-11
- 期刊:
- 影响因子:4.3
- 作者:Pan X;Kortemme T
- 通讯作者:Kortemme T
Recent advances in de novo protein design: Principles, methods, and applications.
- DOI:10.1016/j.jbc.2021.100558
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Pan X;Kortemme T
- 通讯作者:Kortemme T
Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.
- DOI:10.1371/journal.pcbi.1004335
- 发表时间:2015
- 期刊:
- 影响因子:4.3
- 作者:Ollikainen N;de Jong RM;Kortemme T
- 通讯作者:Kortemme T
Expanding the space of protein geometries by computational design of de novo fold families.
- DOI:10.1126/science.abc0881
- 发表时间:2020-08-28
- 期刊:
- 影响因子:0
- 作者:Pan X;Thompson MC;Zhang Y;Liu L;Fraser JS;Kelly MJS;Kortemme T
- 通讯作者:Kortemme T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanja Kortemme其他文献
Tanja Kortemme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanja Kortemme', 18)}}的其他基金
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
- 批准号:
10406129 - 财政年份:2022
- 资助金额:
$ 34.89万 - 项目类别:
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
- 批准号:
10654738 - 财政年份:2022
- 资助金额:
$ 34.89万 - 项目类别:
Computational design of protein-based small-molecule biosensors
基于蛋白质的小分子生物传感器的计算设计
- 批准号:
9274033 - 财政年份:2015
- 资助金额:
$ 34.89万 - 项目类别:
Computational design of protein-based small-molecule biosensors
基于蛋白质的小分子生物传感器的计算设计
- 批准号:
9261549 - 财政年份:2015
- 资助金额:
$ 34.89万 - 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
- 批准号:
8299557 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
- 批准号:
8665442 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
- 批准号:
8478145 - 财政年份:2011
- 资助金额:
$ 34.89万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.89万 - 项目类别:
Continuing Grant