Discovery of Protein Network Function
蛋白质网络功能的发现
基本信息
- 批准号:9007917
- 负责人:
- 金额:$ 56.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAmino Acid SequenceAmino AcidsAnimal ModelBindingBiologicalBiological AssayBiological ProcessBiomedical EngineeringCell CycleCell physiologyCollectionComplexComputer SimulationDataData SetDevelopmentDiseaseEngineeringGene ProteinsGenesGeneticGuanosine Triphosphate PhosphohydrolasesHigh-Throughput Nucleotide SequencingHumanIndividualInterventionKnowledgeLeadLinkMammalian CellMapsMass Spectrum AnalysisMeasurementMethodsModelingMolecularMutationOrganismOutcomePhenotypePhysicsPoint MutationPositioning AttributeProcessProteinsQuantitative GeneticsResearchResearch PersonnelResolutionRunningSaccharomyces cerevisiaeSequence AnalysisSeveritiesSignal TransductionSignaling ProteinStructureSystemTechniquesTechnologyTest ResultTestingTherapeutic InterventionTimeTranslatingTranslationsWorkYeastsbasedesignfitnessimprovedin vitro Modelin vivoinnovationinsightinterdisciplinary approachinterestknock-downmultidisciplinarymutantnew therapeutic targetnovel therapeuticsprecision medicinepredictive modelingprotein complexprotein functionprotein protein interactionpublic health relevanceresearch studytool
项目摘要
DESCRIPTION (provided by applicant): Large-scale biological datasets reveal increasingly complex genetic and protein-protein interaction networks. As a consequence of this complexity, for key proteins with many interaction partners that are found at central positions in the network,
it is difficult to extract quantitative information on how each interaction contributes to distinctor overlapping cellular functions, and, importantly, how changes to individual interactions result in altered function or disease. This knowledge would be critical for progress in many fields, such as biological engineering that requires predictive control of signaling networks, or the development of new targeted interventions in precision medicine. The long-term objective of this project is to advance studies that dissect complex protein networks by creating and testing a new multidisciplinary bioengineering approach that links systematic computational prediction of molecular perturbations at the amino acid-level to their effects on biological processes at the systems-level. The project will initially target the highly-conserved multi-functional Gsp1/Ran GTPase that controls key eukaryotic processes. The approach first engineers defined perturbations to protein-protein interactions by amino acid mutations ("edge perturbations"). The second step determines the functional effects of these perturbations at the cellular and organism level. The project advances technologies developed in three groups and integrates them into a platform that combines physics-based modeling and reengineering of interactions (Kortemme), mechanistic analysis of sequence-structure-function-fitness relationships (Bolon), and large-scale physical and genetic interaction mapping (Krogan). Innovative aspects are (i) the new integration of approaches and (ii) preliminary data indicating that the approach can not only dissect existing Gsp1 functions but also discover new biological functions, even for this well-studied protein. Aim 1 proposes to develop, test, and advance a validated computational model that can be used both to engineer and to interpret quantitative perturbations to interactions in protein-protein networks. Aim 2 will test hypotheses from Aim 1 by determining the consequences of engineered perturbations on cellular function in the model organism S. cerevisiae, chosen for its genetic tractability and extensive available information to validate the
approach. Integration of the model from Aim 1 and data from Aim 2 will lead to an improved model and new hypotheses that will in turn be tested, resulting in new knowledge of the mechanistic basis of systems-level changes in function. Aim 3 will translate our platform into mammalian cells, which will provide fundamental insights into conserved and divergent mechanisms of Gsp1/Ran that is 83% identical in amino acid sequence between yeast and human. Our study will result in a validated technological platform that can be applied to other systems to derive predictive models of consequences of mutations on cellular function and organismal fitness. Long-term, we expect this platform to impact bioengineering approaches as well as the development of new targeted therapies that make precise network perturbations.
描述(由申请人提供):大规模生物数据集揭示了越来越复杂的遗传和蛋白质-蛋白质相互作用网络。由于这种复杂性,对于在网络中心位置发现的具有许多相互作用伙伴的关键蛋白质,
很难提取关于每种相互作用如何促成不同或重叠的细胞功能的定量信息,重要的是,个体相互作用的变化如何导致改变的功能或疾病。这些知识对于许多领域的进展至关重要,例如需要预测控制信号网络的生物工程,或开发精准医学中的新靶向干预措施。该项目的长期目标是通过创建和测试一种新的多学科生物工程方法来推进解剖复杂蛋白质网络的研究,该方法将氨基酸水平上分子扰动的系统计算预测与其对系统水平上生物过程的影响联系起来。该项目最初将针对控制关键真核生物过程的高度保守的多功能Gsp 1/Ran GTdR。该方法首先工程师定义了由氨基酸突变引起的蛋白质-蛋白质相互作用的扰动(“边缘扰动”)。第二步确定这些扰动在细胞和生物体水平上的功能效应。该项目推进了三组开发的技术,并将其整合到一个平台中,该平台结合了基于物理的相互作用建模和再工程(Kortemme),序列-结构-功能-适应性关系的机械分析(Bolon)以及大规模物理和遗传相互作用映射(Krogan)。创新的方面是(i)新的整合方法和(ii)初步数据表明,该方法不仅可以剖析现有的Gsp 1功能,而且还发现新的生物学功能,即使是这种研究充分的蛋白质。目标1提出开发,测试和推进一个经过验证的计算模型,该模型可用于工程设计和解释蛋白质-蛋白质网络相互作用的定量扰动。目标2将通过确定工程扰动对模式生物S中细胞功能的影响来检验目标1中的假设。酿酒酵母,选择其遗传易处理性和广泛的可用信息,以验证
approach.目标1的模型和目标2的数据的整合将导致一个改进的模型和新的假设,反过来将被测试,导致新的知识的机制基础的系统级的功能变化。目的3将我们的平台翻译到哺乳动物细胞中,这将为Gsp 1/Ran的保守和差异机制提供基础性的见解,该基因在酵母和人类之间的氨基酸序列具有83%的同源性。我们的研究将产生一个经过验证的技术平台,可以应用于其他系统,以获得突变对细胞功能和生物体适应性的预测模型。从长远来看,我们希望这个平台能够影响生物工程方法以及开发新的靶向治疗方法,从而精确地扰乱网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanja Kortemme其他文献
Tanja Kortemme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanja Kortemme', 18)}}的其他基金
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
- 批准号:
10406129 - 财政年份:2022
- 资助金额:
$ 56.82万 - 项目类别:
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
- 批准号:
10654738 - 财政年份:2022
- 资助金额:
$ 56.82万 - 项目类别:
Computational design of new protein structures and interactions
新蛋白质结构和相互作用的计算设计
- 批准号:
10396457 - 财政年份:2015
- 资助金额:
$ 56.82万 - 项目类别:
Computational design of protein-based small-molecule biosensors
基于蛋白质的小分子生物传感器的计算设计
- 批准号:
9274033 - 财政年份:2015
- 资助金额:
$ 56.82万 - 项目类别:
Computational design of protein-based small-molecule biosensors
基于蛋白质的小分子生物传感器的计算设计
- 批准号:
9261549 - 财政年份:2015
- 资助金额:
$ 56.82万 - 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
- 批准号:
8299557 - 财政年份:2011
- 资助金额:
$ 56.82万 - 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
- 批准号:
8665442 - 财政年份:2011
- 资助金额:
$ 56.82万 - 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
- 批准号:
8478145 - 财政年份:2011
- 资助金额:
$ 56.82万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Continuing Grant