Free Radical Metabolism and Imaging

自由基代谢和成像

基本信息

  • 批准号:
    10395521
  • 负责人:
  • 金额:
    $ 3.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-14 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT During the past two decades a significant body of evidence has shown that metabolic oxidation/reduction reactions represent a significant underlying mechanism contributing to promotion and progression of malignancy, as well as a therapeutic target for selectively sensitizing cancer cells to therapeutic interventions and protecting normal tissues from conventional cytotoxic therapies. Evolving in parallel has been the recognition that advanced medical imaging techniques, measuring metabolic changes in cancer versus normal tissues before and during therapy show great promise in allowing non-invasive quantitation and monitoring of fundamental differences in cancer cell metabolism to improve cancer therapy. The overarching hypothesis in the Free Radical Metabolism and Imaging (FRMI) program is that cancer cells exist in a chronic state of metabolic oxidative stress that represents a significant underlying mechanism contributing to promotion and progression of malignancy as well as a therapeutic target for sensitizing tumor cells to therapy as well as protecting against normal tissue injury. Furthermore, functional imaging techniques measuring metabolic changes in tumors versus normal tissues have shown great promise as predictors and biomarkers that can be used to improve cancer therapy. The diverse membership of this unique program includes 33 full members and five associate members representing two colleges and nine departments. These investigators work together to take full advantage of the convergence of the science in these two related disciplines for developing a mechanism based biochemical rationale for new image-guided cancer therapies and diagnostic/prognostic tools. FRMI members are highly collaborative. During the last period of support, 83% of a total of 235 cancer relevant publications were collaborative including 75 (32%) intraprogrammatic, 83 (35%) interprogrammatic and 127 (54%) interinstitutional publications including 17 in high impact (Impact Factor >10) journals. Program member cancer research was supported by $3.7 million of direct peer-reviewed funding including $2.1 million of NCI funding in the last year of CCSG support. Productive intra/interprogrammatic and interinstitutional groups are leading advances in the development of pharmacological ascorbate as an adjuvant to cancer therapy supported by a new NCI P01, superoxide dismutase mimetics for protection of normal tissues toxicities, and peptide-targeted, radionuclide-based theragnostic treatments.
项目总结/摘要 在过去的二十年里,大量的证据表明,代谢氧化/还原 反应代表了促进和进展的重要潜在机制, 恶性肿瘤,以及用于选择性地使癌细胞对治疗干预敏感的治疗靶标 以及保护正常组织免受常规细胞毒性疗法的影响。与此同时, 认识到先进的医学成像技术,测量癌症与正常人的代谢变化, 治疗前和治疗期间的组织在允许非侵入性定量和监测 癌细胞代谢的根本差异,以改善癌症治疗。最重要的假设是 自由基代谢和成像(FRMI)计划是癌细胞存在于一种慢性状态, 代谢性氧化应激,代表促进和 以及用于使肿瘤细胞对治疗敏感的治疗靶点, 防止正常组织损伤。此外,功能成像技术测量代谢 肿瘤相对于正常组织的变化已经显示出作为预测因子和生物标志物的巨大前景, 用于改善癌症治疗。这一独特计划的成员包括33名正式成员, 代表两所书院及九个学系的五名准会员。这些调查人员共同努力, 充分利用这两个相关学科的科学融合, 新的图像引导癌症治疗和诊断/预后的基于机制的生化原理 工具. FRMI成员具有高度协作性。在上一次支持期间,235名癌症患者中有83% 相关出版物是合作出版的,包括75份(32%)方案内出版物,83份(35%)方案间出版物 127篇(54%)机构间出版物,包括17篇高影响力(影响因子>10)期刊。程序 成员癌症研究得到了370万美元的直接同行评审资金的支持,其中包括210万美元 在CCSG支持的最后一年,NCI资助。富有成效的方案内/方案间和机构间 一些研究小组在开发抗坏血酸作为癌症辅助药物方面取得了领先的进展 由新的NCI P01支持的治疗,用于保护正常组织的超氧化物歧化酶模拟物 毒性和肽靶向的、基于放射性核素的治疗不确定性治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Robert Spitz其他文献

Douglas Robert Spitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Robert Spitz', 18)}}的其他基金

Project 2: Exploiting Labile Iron Pools for Improving NSCLC Therapy Using Pharmacological Ascorbate
项目 2:利用药理学抗坏血酸利用不稳定铁池改善 NSCLC 治疗
  • 批准号:
    10240531
  • 财政年份:
    2018
  • 资助金额:
    $ 3.55万
  • 项目类别:
Project 2: Exploiting Labile Iron Pools for Improving NSCLC Therapy Using Pharmacological Ascorbate
项目 2:利用药理学抗坏血酸利用不稳定铁池改善 NSCLC 治疗
  • 批准号:
    10005908
  • 财政年份:
    2018
  • 资助金额:
    $ 3.55万
  • 项目类别:
Developmental Research Program
发展研究计划
  • 批准号:
    8850629
  • 财政年份:
    2015
  • 资助金额:
    $ 3.55万
  • 项目类别:
Enhancing Metabolic Oxidative Stress and Therapy Responses in Cancer Stem Cells
增强癌症干细胞的代谢氧化应激和治疗反应
  • 批准号:
    8623548
  • 财政年份:
    2013
  • 资助金额:
    $ 3.55万
  • 项目类别:
Enhancing Metabolic Oxidative Stress and Therapy Responses in Cancer Stem Cells
增强癌症干细胞的代谢氧化应激和治疗反应
  • 批准号:
    8776281
  • 财政年份:
    2013
  • 资助金额:
    $ 3.55万
  • 项目类别:
Radiation and Free Radical Research Core
辐射和自由基研究核心
  • 批准号:
    7900763
  • 财政年份:
    2009
  • 资助金额:
    $ 3.55万
  • 项目类别:
Enhancement of Cancer Therapy Using Ketogenic Diets
使用生酮饮食增强癌症治疗
  • 批准号:
    7639109
  • 财政年份:
    2009
  • 资助金额:
    $ 3.55万
  • 项目类别:
Free Radical Cancer Biology Program
自由基癌症生物学计划
  • 批准号:
    7900743
  • 财政年份:
    2009
  • 资助金额:
    $ 3.55万
  • 项目类别:
The Use of 2-Deoxyglucose in Head and Neck Cancer Therapy
2-脱氧葡萄糖在头颈癌治疗中的应用
  • 批准号:
    8197317
  • 财政年份:
    2008
  • 资助金额:
    $ 3.55万
  • 项目类别:
The Use of 2-Deoxyglucose in Head and Neck Cancer Therapy
2-脱氧葡萄糖在头颈癌治疗中的应用
  • 批准号:
    7613858
  • 财政年份:
    2008
  • 资助金额:
    $ 3.55万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了