INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
基本信息
- 批准号:10396872
- 负责人:
- 金额:$ 8.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:ART proteinAffectAmericanAnimalsAwardAxonBody WeightBody Weight decreasedBrainBrain regionCalciumCaloriesCell NucleusCommunicationCuesDataDetectionDevelopmentEatingFiberFoodGastrointestinal tract structureGrantHeterogeneityHungerHypothalamic structureImageImaging TechniquesIndividualInfusion proceduresIntakeKnowledgeMacronutrients NutritionMeasuresMediatingMentorsMentorshipMonitorMusNeuronsNeurosciencesNutrientObesityPeripheralPhasePhotometryPopulationPositioning AttributePublic HealthPublishingRegulationResearchResearch PersonnelRoleSatiationSensorySignal TransductionSmell PerceptionStomachStructureSynapsesTechnical ExpertiseTechniquesTechnologyTestingTimeTrainingUnited StatesVagus nerve structureVisionWeight GainWorkawakebasecareercareer developmentcell typecomorbiditydesigndetection of nutrientenergy balanceexperienceexperimental studyfeedingfood consumptiongastrointestinalgut-brain axishindbrainin vivoin vivo calcium imagingintegration sitemicroendoscopynovelobesity treatmentpost-doctoral trainingprogramsrelating to nervous systemresponsetwo photon microscopyweight loss intervention
项目摘要
PROJECT SUMMARY
The recent increase in obesity is a major public health concern. Since energy balance regulation is coordinated
by communication between the gastrointestinal (GI) tract and the brain, understanding these gut-brain
interactions will enable the development of novel obesity treatments. The hypothalamus and the hindbrain are
critical brain regions that integrate information from the gut to control food intake. Here, I will leverage recent
technological advances to explore the regulation of both these brain regions in awake, behaving animals.
Within the hypothalamus, agouti-related protein (AgRP)-expressing neurons are essential for food intake
control. Activity in AgRP neurons is high during hunger and is rapidly inhibited by food. My recent work
demonstrates that AgRP neurons are primarily regulated by calorie intake, rather than sensory detection of
food, since direct gastric infusion of macronutrients into the stomach rapidly suppresses AgRP neuron activity
in vivo. Further, this effect is recapitulated by administration of GI satiation signals normally released following
food consumption. However, the mechanisms through which the gut transmits signals to AgRP neurons remain
unknown. The mentored phase (Aims I and II) of this grant will build upon my previous work by elucidating the
mechanisms through which nutrient detection in the gut leads to AgRP neuron activity reductions. Specifically,
these aims will determine whether GI signals are transmitted vagally or through direct action on the brain, and
will uncover the AgRP axon projections that transmit nutritive signals throughout the brain. Importantly, the
mentored experiments will afford me training in peripheral manipulation of the GI tract, as well as in vivo
calcium imaging of individual neurons using microendoscopy and 2-photon microscopy, expanding my
technical expertise and enabling the proposed R00 experiments. The hindbrain nucleus tractus solitarius (NTS)
is the first central site of integration of GI-derived signals from vagal afferents, and is a key signaling node that
transmits signals from the gut to higher-order brain structures such as the hypothalamus. For the independent
phase (Aims III and IV) of my grant, I have designed experiments that build upon both my graduate and
postdoctoral training to determine how different hindbrain NTS neuron populations receive signals from the GI
tract, at unprecedented levels of temporal and cellular detail. These complementary research aims combined
with the proposed career development activities will provide me with the training necessary to successfully
transition to independence, under the guidance of my mentorship team who have extensive collective
experience with neuroscience techniques and mentorship. Overall, this award will facilitate my career as an
independent investigator characterizing the role of gut-brain signaling on the in vivo activity dynamics of
feeding-relevant neurons.
项目摘要
最近肥胖症的增加是一个主要的公共卫生问题。由于能量平衡调节协调
通过胃肠(GI)道和大脑之间的交流,了解这些肠-脑
相互作用将使新的肥胖治疗的发展。下丘脑和后脑
整合来自肠道的信息以控制食物摄入的关键大脑区域。在这里,我将利用最近的
技术的进步,以探索这两个大脑区域在清醒,行为动物的调节。
在下丘脑内,表达刺鼠相关蛋白(AgRP)的神经元对食物摄入至关重要
控制AgRP神经元的活动在饥饿期间很高,并迅速被食物抑制。我最近的工作
表明AgRP神经元主要受卡路里摄入量的调节,而不是感觉检测到
食物,因为将大量营养素直接注入胃中会迅速抑制AgRP神经元的活性
in vivo.此外,这种作用通过施用胃肠道饱食信号来重现,胃肠道饱食信号通常在胃肠道饱食后释放。
食物消费然而,肠道将信号传递给AgRP神经元的机制仍然存在,
未知该补助金的指导阶段(目标I和II)将建立在我以前的工作基础上,阐明
肠道中的营养检测导致AgRP神经元活性降低的机制。具体地说,
这些目标将决定GI信号是通过迷走神经还是通过对大脑的直接作用进行传输,
将揭示AgRP轴突投射,它将营养信号传递到整个大脑。重要的是
指导实验将为我提供胃肠道外周操作的培训,以及体内
使用显微内窥镜和双光子显微镜对单个神经元进行钙成像,
技术专长,并使拟议的R 00实验。中脑孤束核(NTS)
是来自迷走神经传入的GI衍生信号整合的第一个中心位点,并且是
将信号从肠道传递到更高级的大脑结构,如下丘脑。为独立
在我的资助的第三阶段(目标III和IV),我设计了基于我的研究生和
博士后培训,以确定不同的后脑NTS神经元群体如何从GI接收信号
道,在前所未有的水平的时间和细胞的细节。这些互补的研究目标结合在一起
与拟议的职业发展活动将为我提供必要的培训,
过渡到独立,在我的导师团队的指导下,谁拥有广泛的集体
神经科学技术和指导经验。总的来说,这个奖项将促进我的职业生涯,
独立研究者表征肠-脑信号传导对体内活性动力学的作用,
进食相关神经元
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amber L Alhadeff其他文献
Pass the salt: the central control of sodium intake
传递盐:钠摄入的中央控制
- DOI:
10.1038/nn.4485 - 发表时间:
2017-01-27 - 期刊:
- 影响因子:20.000
- 作者:
Amber L Alhadeff;J Nicholas Betley - 通讯作者:
J Nicholas Betley
Amber L Alhadeff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amber L Alhadeff', 18)}}的其他基金
Unraveling the homeostatic and hedonic circuits underlying feeding behavior and obesity
揭示进食行为和肥胖背后的稳态和享乐回路
- 批准号:
10491171 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Unraveling the homeostatic and hedonic circuits underlying feeding behavior and obesity
揭示进食行为和肥胖背后的稳态和享乐回路
- 批准号:
10662504 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Leica STELLARIS 5 Confocal Microscope
Leica STELLARIS 5 共焦显微镜
- 批准号:
10177189 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Harnessing sensory food circuits to influence feeding behavior
利用感官食物回路影响进食行为
- 批准号:
10245940 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Unraveling the homeostatic and hedonic circuits underlying feeding behavior and obesity
揭示进食行为和肥胖背后的稳态和享乐回路
- 批准号:
10346410 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10064373 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10321583 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10513159 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10092151 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 8.75万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 8.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




