Improving representation of non-Hispanic Black and Hispanic study participants in a trial of virtual reality for chronic lower back pain

改善慢性腰痛虚拟现实试验中非西班牙裔黑人和西班牙裔研究参与者的代表性

基本信息

  • 批准号:
    10400468
  • 负责人:
  • 金额:
    $ 39.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-25 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Although digital health technologies are now widely available for both therapeutic and monitoring applications, there are racial and ethnic disparities in uptake and effectiveness of digital health interventions. Of relevance to our parent HEAL study examining a digital health intervention (virtual reality) for pain management, recent data indicate that non-Hispanic Black and Hispanic patients are less likely to have access to digital health information and more likely to report severe pain than non-Hispanic whites. In addition to disparities in access and adoption of digital health interventions, there are known disparities in the incidence and reporting of pain by racial and ethnic minorities. For example, study of 2000 patients found that non-Hispanic Black and Hispanic patients were more likely to report severe pain than non-Hispanic whites. The proposed study for this Diversity, Inclusion and Engagement Supplement to our NIH HEAL study evaluating the role of therapeutic VR for chronic lower back pain (cLBP) will provide a framework to advance diversity and inclusion efforts for future digital health trials at our medical center and beyond. Further, it will enhance the parent study by seeking to increase the proportion of participants with historically less access to and familiarity with digital technologies while enhancing overall participant racial and ethnic diversity. Using the NIH Stage Model for Behavioral Intervention Development supported by advances in artificial intelligence (AI)-driven cohort building tools, we propose to meaningfully improve enrollment rates of non-Hispanic Black and Hispanic participants in our parent NIH HEAL study by achieving two aims: (1) tailor recruitment materials for non-Hispanic Black and Hispanic patients with cLBP in partnership with representative patient advisory boards; and (2) oversample non-Hispanic Black and Hispanic participants in parent study using an AI-driven cohort building tool housed within the electronic health record.
项目摘要 尽管数字健康技术现在广泛用于治疗和监测 在数字医疗的应用方面,在数字医疗的吸收和有效性方面存在种族和民族差异 干预措施。与我们的母公司HEAL研究相关,该研究检查了数字健康干预(虚拟 对于疼痛管理,最近的数据表明,非西班牙裔黑人和西班牙裔患者 不太可能获得数字健康信息,更有可能报告严重疼痛, 非西班牙裔白人除了在获得和采用数字健康干预措施方面的差距外, 已知少数种族和族裔在疼痛的发生率和报告方面存在差异。 例如,对2000名患者的研究发现,非西班牙裔黑人和西班牙裔患者 比非西班牙裔白人更容易报告严重疼痛。针对这一多样性的拟议研究, 纳入和参与补充我们的NIH HEAL研究评估的作用,治疗 慢性下背痛(cLBP)的VR将为促进多样性和包容性提供一个框架 为我们的医疗中心和其他地方的未来数字健康试验做出努力。此外,它还将增强 通过寻求增加参与者的比例与历史上较少获得父母的研究 和熟悉数字技术,同时提高整体参与者的种族和民族 多样性使用NIH行为干预发展阶段模型, 人工智能(AI)驱动的队列构建工具的进步,我们建议有意义地 提高非西班牙裔黑人和西班牙裔参与者在我们的母体NIH HEAL中的入学率 研究通过实现两个目标:(1)为非西班牙裔黑人和西班牙裔美国人量身定制招聘材料 与代表性患者咨询委员会合作的cLBP患者;和(2)过采样 非西班牙裔黑人和西班牙裔参与者在父母研究中使用AI驱动的队列构建 电子健康记录中的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brennan Spiegel其他文献

Brennan Spiegel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brennan Spiegel', 18)}}的其他基金

Transcending COVID-19 barriers to pain care in rural America: Pragmatic comparative effectiveness trial of evidence-based, on-demand, digital behavioral treatments for chronic pain
超越美国农村地区疼痛护理的 COVID-19 障碍:针对慢性疼痛的循证、按需、数字行为治疗的实用比较有效性试验
  • 批准号:
    10425444
  • 财政年份:
    2021
  • 资助金额:
    $ 39.81万
  • 项目类别:
Transcending COVID-19 barriers to pain care in rural America: Pragmatic comparative effectiveness trial of evidence-based, on-demand, digital behavioral treatments for chronic pain
超越美国农村地区疼痛护理的 COVID-19 障碍:针对慢性疼痛的循证、按需、数字行为治疗的实用比较有效性试验
  • 批准号:
    10610907
  • 财政年份:
    2021
  • 资助金额:
    $ 39.81万
  • 项目类别:
Transcending COVID-19 barriers to pain care in rural America: Pragmatic comparative effectiveness trial of evidence-based, on-demand, digital behavioral treatments for chronic pain
超越美国农村地区疼痛护理的 COVID-19 障碍:针对慢性疼痛的循证、按需、数字行为治疗的实用比较有效性试验
  • 批准号:
    10242572
  • 财政年份:
    2021
  • 资助金额:
    $ 39.81万
  • 项目类别:
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity
虚拟现实治疗慢性腰痛的随机对照试验,以改善患者报告的结果和身体活动
  • 批准号:
    10671360
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity
虚拟现实治疗慢性腰痛的随机对照试验,以改善患者报告的结果和身体活动
  • 批准号:
    10683125
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity
虚拟现实治疗慢性腰痛的随机对照试验,以改善患者报告的结果和身体活动
  • 批准号:
    10896861
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity (HEAL Supplement)
虚拟现实治疗慢性腰痛的随机对照试验,以改善患者报告的结果和身体活动(HEAL 补充)
  • 批准号:
    10650652
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity: Understanding Patient Predictors of Response
虚拟现实治疗慢性腰痛的随机对照试验,以改善患者报告的结果和身体活动:了解患者反应的预测因素
  • 批准号:
    10350470
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity
虚拟现实治疗慢性腰痛的随机对照试验,以改善患者报告的结果和身体活动
  • 批准号:
    10472620
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity
虚拟现实治疗慢性腰痛的随机对照试验,以改善患者报告的结果和身体活动
  • 批准号:
    10267739
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了