PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
基本信息
- 批准号:10398904
- 负责人:
- 金额:$ 39.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressAdoptedAlgorithmsBindingBiologicalCancer CenterCancer DiagnosticsCellular immunotherapyClinical ResearchCollaborationsCommunitiesComplementComplexComputer softwareComputer-Aided DesignComputersCountryCustomCyclic PeptidesDataData AggregationData AnalyticsData ScienceDatabasesDevelopmentDimensionsDiseaseDockingDrug resistanceEstrogen ReceptorsEvolutionFundingGenetic PolymorphismGoalsGreekHLA AntigensIntuitionLettersLigand BindingLigandsMalignant NeoplasmsMethodologyMethodsModelingMolecularMolecular ConformationMutationMythologyNatureOccupationsPeptidesPhosphopeptidesPhosphorylated PeptidePlayPost-Translational Protein ProcessingProcessProtein AnalysisProtein ConformationProteinsProteomicsPublic HealthRNA EditingResearchResearch PersonnelResourcesRoleRunningSamplingSoftware ToolsStructural ModelsSystemT-LymphocyteThe Cancer Genome AtlasTumor AntigensVariantVisualizationWorkanticancer researchbasecancer immunotherapycancer therapycomputational pipelinescomputerized toolsdata acquisitiondesigndriver mutationdrug discoveryexperienceflexibilityimprovedin silicoinnovationinterestmachine learning methodmalignant breast neoplasmmelanomamulti-scale modelingnovel diagnosticsnovel therapeuticspeptide based vaccineprogramsprototypereceptorscale upscreeningtooltumoruser-friendlyvaccine developmentweb app
项目摘要
Project Summary
Understanding protein–ligand molecular interactions is fundamental to understanding the role of proteins in
complex diseases such as cancer. For instance, there is growing interest in predicting the binding modes of
peptide-based ligands (e.g., cyclic and phosphorylated peptides) to inhibit or induce targeted degradation of
high-profile cancer targets. Another promising example is the identification of tumor-associated antigens for cancer
immunotherapy applications. Both examples involve very specific molecular interactions, provide opportunities
for computer-aided design of better cancer treatments, and highlight the need for structural analyses in cancer
research. They also require new methods that account for the flexibility and variability of the protein receptors
involved in these molecular interactions. The objective of this project is to develop an integrated approach to the
structural modeling and analysis of protein–ligand interactions in cancer research that will be implemented in
the proteomics toolkit PROTEAN-CR. The proposed toolkit will adopt a data-science approach to the problem
by introducing approaches for data acquisition and aggregation, as well as algorithmic advances for handling
receptor flexibility and for modeling driver mutations, drug-resistance polymorphisms, and post-translational
modifications. PROTEAN-CR will streamline running structural analyses at scale while providing meaningful data
analytics. The long-term goal of our research is to fully integrate three-dimensional structural information about
proteins and ligands and structural analysis into cancer research. The PIs will work with collaborators to target
a wide range of users, from experimentalists with little to no programming experience, to advanced users who
are comfortable scripting large-scale analyses and integrating the toolkit with their own computational pipeline.
The central hypothesis is that a unified data-science-inspired approach can be used to address major challenges
in structural analysis of protein–ligand interactions in cancer research at scale. The first aim will incorporate
protein flexibility in docking studies for cancer research. Specific workflows will be used to generate ensembles of
protein conformations (receptor flexibility) and innovative machine learning methods will be implemented aiming
at a better scoring of protein–ligand complexes. The second aim will focus on including cancer variability into
structural analysis. We aim to fill the gap that exists between available data on cancer variants and the structural
analysis of ensembles of tumor-associated mutations and protein modifications. Finally, the third aim will focus on
customization, interpretability and scalability, where user-friendly methods will be deployed to manage ensembles
of protein-ligand complexes. PROTEAN-CR will be developed focusing on specific cancer-related projects, and
with a broad network of collaborators, enabling the design, implementation and evolution of the tool according to
the needs of the cancer research community.
项目摘要
了解蛋白质 - 配体分子相互作用是理解蛋白质在
癌症等复杂疾病。例如,预测的结合模式越来越兴趣
基于肽的配体(例如环状和磷酸化肽)抑制或影响靶向降解的降解
高蛋白癌靶标。另一个有希望的例子是鉴定癌症相关的抗原
免疫疗法应用。这两个示例都涉及非常具体的分子相互作用,提供了机会
用于计算机辅助设计更好的癌症治疗,并强调对癌症进行结构分析的需求
研究。他们还需要新的方法来解释蛋白质接收器的灵活性和可变性
参与这些分子相互作用。该项目的目的是开发一种综合方法
癌症研究中蛋白质 - 配体相互作用的结构建模和分析将在
蛋白质组学工具包蛋白质。拟议的工具包将采用数据科学方法来解决问题
通过介绍数据获取和聚合的方法,以及处理算法的进步
受体的功能和建模驱动器突变,抗药性多态性和翻译后
修改。 Protean-CR将在提供有意义的数据的同时简化大规模运行结构分析
分析。我们研究的长期目标是完全整合有关有关的三维结构信息
蛋白质和配体以及对癌症研究的结构分析。 PI将与合作者合作以定位
从几乎没有编程经验的实验者到高级用户的广泛用户
可以舒适地脚本脚本进行大规模分析,并将工具包与自己的计算管道集成在一起。
中心假设是一种统一的数据科学风格的方法可用于应对主要挑战
在癌症研究中蛋白质与配体相互作用的结构分析中。第一个目标将纳入
癌症研究对接研究中的蛋白质灵活性。特定的工作流将用于生成
将实施蛋白质构象(受体的敏感性)和创新的机器学习方法
在蛋白质 - 配合物配合物的更好评分下。第二个目标将集中于将癌症变异性纳入其中
结构分析。我们的目的是填补有关癌症变体的可用数据和结构的差距
分析肿瘤相关突变和蛋白质修饰的综合。最后,第三个目标将重点放在
自定义,可解释性和可扩展性,将部署用户友好的方法来管理合奏
蛋白质配体复合物。 Protean-CR将集中于与癌症相关的特定项目,以及
通过广泛的合作者网络,可以根据该工具的设计,实施和演变
癌症研究界的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia E. Kavraki其他文献
Task and Motion Planning for Execution in the Real
真实执行的任务和运动规划
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.8
- 作者:
Tianyang Pan;Rahul Shome;Lydia E. Kavraki - 通讯作者:
Lydia E. Kavraki
Lydia E. Kavraki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia E. Kavraki', 18)}}的其他基金
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10188196 - 财政年份:2021
- 资助金额:
$ 39.74万 - 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10615697 - 财政年份:2021
- 资助金额:
$ 39.74万 - 项目类别:
NLM Training Program in Biomedical Informatics & Data Science for Predoctoral and Postdoctoral Fellows
NLM 生物医学信息学培训计划
- 批准号:
9526234 - 财政年份:2017
- 资助金额:
$ 39.74万 - 项目类别:
Structure-based selection of tumor-antigens for T-cell based immunotherapy
基于结构的 T 细胞免疫治疗肿瘤抗原选择
- 批准号:
9332344 - 财政年份:2016
- 资助金额:
$ 39.74万 - 项目类别:
Structure-based selection of tumor-antigens for T-cell based immunotherapy
基于结构的 T 细胞免疫治疗肿瘤抗原选择
- 批准号:
9186273 - 财政年份:2016
- 资助金额:
$ 39.74万 - 项目类别:
COMPUTATIONAL ANALYSIS OF PROTEIN COMPLEX BINDING
蛋白质复合物结合的计算分析
- 批准号:
8171877 - 财政年份:2010
- 资助金额:
$ 39.74万 - 项目类别:
STRUCTURAL AND THERMODYNAMICAL PROPERTIES OF COMPLEXES FORMED BY THE HUMAN COMP
人类复合物形成的结构和热力学性质
- 批准号:
7956267 - 财政年份:2009
- 资助金额:
$ 39.74万 - 项目类别:
COMPUTATIONAL ANALYSIS OF PROTEIN COMPLEX BINDING
蛋白质复合物结合的计算分析
- 批准号:
7956338 - 财政年份:2009
- 资助金额:
$ 39.74万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别: