PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
基本信息
- 批准号:10188196
- 负责人:
- 金额:$ 40.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAlgorithmsBindingBiologicalCancer CenterCancer DiagnosticsCellular immunotherapyClinical ResearchCollaborationsCommunitiesComplementComplexComputer softwareComputer-Aided DesignComputersCountryCustomCyclic PeptidesDataData AggregationData AnalyticsData ScienceDatabasesDevelopmentDimensionsDiseaseDockingDrug resistanceEstrogen ReceptorsEvolutionFundingGenetic PolymorphismGoalsGreekHLA AntigensIntuitionLettersLigand BindingLigandsMalignant NeoplasmsMethodologyMethodsModelingMolecularMolecular ConformationMolecular StructureMutationMythologyNatureOccupationsPeptidesPhosphopeptidesPhosphorylated PeptidePlayPost-Translational Protein ProcessingProcessProtein AnalysisProtein ConformationProteinsProteomicsPublic HealthRNA EditingResearchResearch PersonnelResourcesRoleRunningSamplingStructural ModelsStructureSystemT-LymphocyteThe Cancer Genome AtlasTumor AntigensVariantVisualizationWorkanticancer researchbasecancer immunotherapycancer therapycomputational pipelinescomputerized toolsdata acquisitiondesigndriver mutationdrug discoveryexperienceflexibilityimprovedin silicoinnovationinterestmachine learning methodmalignant breast neoplasmmelanomamulti-scale modelingnovel diagnosticsnovel therapeuticspeptide based vaccineprogramsprototypereceptorscale upscreeningthree dimensional structuretooltumoruser-friendlyvaccine developmentweb app
项目摘要
Project Summary
Understanding protein–ligand molecular interactions is fundamental to understanding the role of proteins in
complex diseases such as cancer. For instance, there is growing interest in predicting the binding modes of
peptide-based ligands (e.g., cyclic and phosphorylated peptides) to inhibit or induce targeted degradation of
high-profile cancer targets. Another promising example is the identification of tumor-associated antigens for cancer
immunotherapy applications. Both examples involve very specific molecular interactions, provide opportunities
for computer-aided design of better cancer treatments, and highlight the need for structural analyses in cancer
research. They also require new methods that account for the flexibility and variability of the protein receptors
involved in these molecular interactions. The objective of this project is to develop an integrated approach to the
structural modeling and analysis of protein–ligand interactions in cancer research that will be implemented in
the proteomics toolkit PROTEAN-CR. The proposed toolkit will adopt a data-science approach to the problem
by introducing approaches for data acquisition and aggregation, as well as algorithmic advances for handling
receptor flexibility and for modeling driver mutations, drug-resistance polymorphisms, and post-translational
modifications. PROTEAN-CR will streamline running structural analyses at scale while providing meaningful data
analytics. The long-term goal of our research is to fully integrate three-dimensional structural information about
proteins and ligands and structural analysis into cancer research. The PIs will work with collaborators to target
a wide range of users, from experimentalists with little to no programming experience, to advanced users who
are comfortable scripting large-scale analyses and integrating the toolkit with their own computational pipeline.
The central hypothesis is that a unified data-science-inspired approach can be used to address major challenges
in structural analysis of protein–ligand interactions in cancer research at scale. The first aim will incorporate
protein flexibility in docking studies for cancer research. Specific workflows will be used to generate ensembles of
protein conformations (receptor flexibility) and innovative machine learning methods will be implemented aiming
at a better scoring of protein–ligand complexes. The second aim will focus on including cancer variability into
structural analysis. We aim to fill the gap that exists between available data on cancer variants and the structural
analysis of ensembles of tumor-associated mutations and protein modifications. Finally, the third aim will focus on
customization, interpretability and scalability, where user-friendly methods will be deployed to manage ensembles
of protein-ligand complexes. PROTEAN-CR will be developed focusing on specific cancer-related projects, and
with a broad network of collaborators, enabling the design, implementation and evolution of the tool according to
the needs of the cancer research community.
项目摘要
了解蛋白质-配体分子相互作用是理解蛋白质在
复杂的疾病,如癌症。例如,人们对预测分子的结合模式越来越感兴趣
基于多肽的配体(例如,环肽和磷酸化肽),以抑制或诱导靶向降解
高度支持file癌症靶点。另一个有希望的例子是肿瘤相关抗原的fi阳离子。
免疫疗法的应用。这两个例子都涉及非常特殊的fic分子相互作用,提供了机会
用于更好的癌症治疗的计算机辅助设计,并强调癌症结构分析的必要性
研究。他们还需要新的方法来解释蛋白质受体的fl灵活性和可变性。
参与这些分子间的相互作用。这个项目的目标是开发一种综合的方法来处理
癌症研究中蛋白质-配体相互作用的结构建模和分析,将在
蛋白质组学工具包Protean-CR。拟议的工具包将采用数据科学的方法来解决这个问题
通过介绍数据获取和聚合的方法以及处理的算法进步
受体fl的灵活性,并用于模拟驱动突变、耐药性多态和翻译后
莫迪fi阳离子。Protean-CR将简化大规模运行的结构分析,同时提供有意义的数据
分析。我们研究的长期目标是完全集成关于
将蛋白质、配体和结构分析应用于癌症研究。PI将与合作者合作,以
广泛的用户,从几乎没有编程经验的实验者到高级用户
编写大规模分析的脚本,并将工具包与自己的计算管道集成在一起。
中心假设是,可以使用一种受数据科学启发的统一fi方法来应对主要挑战
在大规模癌症研究中蛋白质-配体相互作用的结构分析。fi第一个目标将包括
蛋白质fl在癌症研究对接研究中的灵活性。SPECIfic WorkflOWS将用于生成
蛋白质构象(受体fl灵活性)和创新的机器学习方法将针对
蛋白质-配体复合体的得分更高。第二个目标将专注于将癌症变异性纳入
结构分析。我们的目标是消除现有的癌症变异数据和结构数据之间存在的差距(fiall
肿瘤相关突变和蛋白质Modifi阳离子的集合分析。最后,第三个目标将集中在
定制化、可解释性和可伸缩性,将部署用户友好的方法来管理合奏
蛋白质-配体复合体。Protean-CR将专注于特定fic癌症相关项目的开发,以及
拥有广泛的协作者网络,支持工具的设计、实施和发展
癌症研究界的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia E. Kavraki其他文献
Task and Motion Planning for Execution in the Real
真实执行的任务和运动规划
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.8
- 作者:
Tianyang Pan;Rahul Shome;Lydia E. Kavraki - 通讯作者:
Lydia E. Kavraki
Editorial: special issue on the 2014 “Robotics: Science & Systems” conference
- DOI:
10.1007/s10514-015-9482-8 - 发表时间:
2015-08-28 - 期刊:
- 影响因子:4.300
- 作者:
Lydia E. Kavraki;Maxim Likhachev - 通讯作者:
Maxim Likhachev
Lydia E. Kavraki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia E. Kavraki', 18)}}的其他基金
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10615697 - 财政年份:2021
- 资助金额:
$ 40.21万 - 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10398904 - 财政年份:2021
- 资助金额:
$ 40.21万 - 项目类别:
NLM Training Program in Biomedical Informatics & Data Science for Predoctoral and Postdoctoral Fellows
NLM 生物医学信息学培训计划
- 批准号:
9526234 - 财政年份:2017
- 资助金额:
$ 40.21万 - 项目类别:
Structure-based selection of tumor-antigens for T-cell based immunotherapy
基于结构的 T 细胞免疫治疗肿瘤抗原选择
- 批准号:
9332344 - 财政年份:2016
- 资助金额:
$ 40.21万 - 项目类别:
Structure-based selection of tumor-antigens for T-cell based immunotherapy
基于结构的 T 细胞免疫治疗肿瘤抗原选择
- 批准号:
9186273 - 财政年份:2016
- 资助金额:
$ 40.21万 - 项目类别:
COMPUTATIONAL ANALYSIS OF PROTEIN COMPLEX BINDING
蛋白质复合物结合的计算分析
- 批准号:
8171877 - 财政年份:2010
- 资助金额:
$ 40.21万 - 项目类别:
STRUCTURAL AND THERMODYNAMICAL PROPERTIES OF COMPLEXES FORMED BY THE HUMAN COMP
人类复合物形成的结构和热力学性质
- 批准号:
7956267 - 财政年份:2009
- 资助金额:
$ 40.21万 - 项目类别:
COMPUTATIONAL ANALYSIS OF PROTEIN COMPLEX BINDING
蛋白质复合物结合的计算分析
- 批准号:
7956338 - 财政年份:2009
- 资助金额:
$ 40.21万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Research Grant














{{item.name}}会员




