EHR-based vs population-based CVD risk predictions for older patients with diabetes
基于 EHR 与基于人群的老年糖尿病患者 CVD 风险预测
基本信息
- 批准号:10399631
- 负责人:
- 金额:$ 44.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAgingAlgorithmsBiological MarkersCardiovascular Diagnostic TechniquesCardiovascular DiseasesCaringChronic DiseaseClinicalClinical DataClinical ManagementClinical MedicineClinical ResearchComplementDataData AnalysesData SetData StoreDiabetes MellitusDiagnosisDiseaseDisease OutcomeDrug PrescriptionsElectronic Health RecordGoldHealthHealthcareHealthcare SystemsIndividualInstitutionInterviewLinkMedicalMedicareMethodologyMethodsMichiganModelingNatureNetwork-basedNew YorkNew York CityNon-Insulin-Dependent Diabetes MellitusOhioPatientsPharmaceutical PreparationsPhenotypePhysical assessmentPopulationPopulation CharacteristicsPopulation SurveillancePublic HealthRecordsReproducibilityResearchRetirementRiskRisk FactorsRural PopulationSamplingServicesSiteSpan 20Statistical MethodsSurveysSystemTimeUnited States Department of Veterans AffairsUniversitiesValidationVeteransVisitbasecardiovascular disorder riskcohortdata modelingdata standardsdata warehousedemographicselectronic dataexperiencehealth care service utilizationimprovedinnovationnovel strategiesolder patientpatient populationpersonalized predictionspersonalized risk predictionphenotyping algorithmpopulation basedpopulation healthprescription procedurerisk predictionrural patientssecondary analysisweb app
项目摘要
Abstract
Since 2010, clinical medicine and public health have benefited from a rapid surge of clinical research on
chronic diseases using data from electronic health records (EHRs). However, while millions of patient records
are included in large EHR networks, they are not population-representative random samples, a constraint
which has restrained their utility for population health research. The non-representative nature of patients
represented in EHR data also poses a major challenge when performing cross-site validation of EHR-based
findings, as study findings tend to reflect the unique characteristics of populations served by specific health
care systems. We propose to perform an integrated secondary data analysis of three unique datasets: 1) the
Health and Retirement Survey (HRS, begun in 1992 and ongoing) that has nationally representative health
interview data for over 20 years, as well as biomarkers, physical assessment information, prescription drug
data, and claims linkages including Medicare D drug claims; 2) the New York University Langone Health EHR
data (NYU-CDRN, 2009 to now) including demographics, vitals, diagnoses, lab results, prescriptions and
procedures; 3) the New York City Clinical Data Research Network (NYC-CDRN) which is an EHR network that
comprises 20 NYC healthcare institutions, including the NYU-CDRN, with longitudinally linked data on over 12
million patient encounters under a Common Data Model; and 4) Veterans Affairs Ann Arbor Healthcare System
(VAAAHS) Corporate Data Warehouse (CDW), which provides an important complement to the NYC-CDRN
patient population when assessing our method’s reproducibility and generalizability for the rural patient
population in care. We will leverage these four datasets to support three strands of questions on EHR-based
risk predictions: 1) assessing its utility for population inference, 2) developing individualized absolute risk
predictions, and 3) assessing its reproducibility and cross-site validation. We will predict risk of subsequent
incident cardiovascular disease (CVD) in older patients (age 50 and older) with type 2 diabetes (T2DM).
Broader use of these methods will be generally applicable to other diseases outcomes. To achieve these
objectives, our study will 1) develop and validate EHR phenotyping and diagnosis time algorithms against gold
standard chart review (Aim 1); 2) assess the population-generalizability of EHR-based risk estimation models
by comparing with cohort-based risk estimation models and develop EHR bias adjustment methods for
population inference (Aim 2); 3) develop methods for EHR-based individualized absolute risk prediction (Aim 3),
and establish the developed methods via cross-site validation (Aim 4).
摘要
自2010年以来,临床医学和公共卫生受益于临床研究的快速增长,
慢性疾病使用电子健康记录(EHR)的数据。然而,尽管数百万的患者记录
包含在大型EHR网络中,它们不是人口代表性随机样本,这是一个约束
这限制了它们在人群健康研究中的应用。患者的非代表性
在对基于EHR的数据进行跨站点验证时,
调查结果,因为研究结果往往反映了特定卫生服务所服务的人口的独特特征,
护理系统。我们建议对三个独特的数据集进行综合的二次数据分析:1)
具有全国代表性的健康与退休调查(HRS,始于1992年并正在进行中)
20多年的访谈数据,以及生物标志物、身体评估信息、处方药
数据和索赔联系,包括Medicare D药物索赔; 2)纽约大学Langone Health EHR
数据(NYU-CDRN,2009年至今),包括人口统计学、生命体征、诊断、实验室结果、处方和
3)纽约市临床数据研究网络(NYC-CDRN),这是一个EHR网络,
包括20个纽约市医疗保健机构,包括NYU-CDRN,纵向链接数据超过12个
通用数据模型下的百万患者就诊;以及4)退伍军人事务部安阿伯医疗保健系统
(VAAAHS)企业数据仓库(CDW),为NYC-CDRN提供重要补充
当评估我们的方法对农村患者的可重复性和普遍性时,
人口在照顾。我们将利用这四个数据集来支持基于EHR的三个问题
风险预测:1)评估其对人群推断的效用,2)制定个体化的绝对风险
预测,和3)评估其重现性和跨站点验证。我们将预测随后的风险
2型糖尿病(T2 DM)老年患者(50岁及以上)的偶发心血管疾病(CVD)。
这些方法的更广泛使用将普遍适用于其他疾病的结果。实现这些
目标,我们的研究将1)开发和验证EHR表型和诊断时间算法对黄金
标准图表审查(目标1); 2)评估基于EHR的风险估计模型的人群普遍性
通过与基于队列的风险估计模型的比较,提出了EHR偏差调整方法,
群体推断(目标2); 3)开发基于EHR的个性化绝对风险预测方法(目标3),
并通过跨中心验证建立开发的方法(目标4)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hua Judy Zhong其他文献
Hua Judy Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hua Judy Zhong', 18)}}的其他基金
EHR-based vs population-based CVD risk predictions for older patients with diabetes
基于 EHR 与基于人群的老年糖尿病患者 CVD 风险预测
- 批准号:
10412553 - 财政年份:2020
- 资助金额:
$ 44.16万 - 项目类别:
EHR-based vs population-based CVD risk predictions for older patients with diabetes
基于 EHR 与基于人群的老年糖尿病患者 CVD 风险预测
- 批准号:
10619562 - 财政年份:2020
- 资助金额:
$ 44.16万 - 项目类别:
EHR-based vs population-based CVD risk predictions for older patients with diabetes
基于 EHR 与基于人群的老年糖尿病患者 CVD 风险预测
- 批准号:
10239231 - 财政年份:2020
- 资助金额:
$ 44.16万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
- 批准号:
22KJ2960 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
- 批准号:
23KK0156 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
- 批准号:
497927 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
- 批准号:
10836835 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
- 批准号:
23K06378 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
- 批准号:
23K10845 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
- 批准号:
478877 - 财政年份:2023
- 资助金额:
$ 44.16万 - 项目类别:
Operating Grants