Role of sumoylation during stress signaling responses
SUMO化在应激信号反应中的作用
基本信息
- 批准号:10398888
- 负责人:
- 金额:$ 38.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelBindingBiochemistryCellsCellular StressCellular biologyChemicalsChromatinComplexDiseaseEukaryotic CellFaceGenesGeneticGenetic TranscriptionGoalsHealthHeart DiseasesHumanIn VitroIndividualKineticsKnowledgeLinkLiquid substanceMalignant NeoplasmsMetabolismNerve DegenerationNon-Insulin-Dependent Diabetes MellitusNuclearPathway interactionsPhasePost-Translational Protein ProcessingPrPProteinsRegulationResearchResolutionRoleSaccharomycetalesSeveritiesSignal TransductionStressStress Response SignalingSumoylation PathwayTimeTranslationsUbiquitinbiological adaptation to stresscell injuryflexibilityinsightmacromoleculeyeast prion
项目摘要
PROJECT SUMMARY
The overall objective of this MIRA proposal is to understand the mechanisms through which eukaryotic stress
response pathways are regulated by post-translational modification of proteins with the small ubiquitin-like
modifier SUMO. Cells must respond and adapt to physical and/or chemical stresses that can irreversibly and
lethally damage essential macromolecules. Stress-response pathways generally adjust transcription,
translation, protein activity or interactions, and metabolism according to the particular stress and its severity. In
eukaryotic cells, stress exposure leads to sumoylation of specific proteins; however, the role(s) of sumoylation
during most stress responses still remain uncertain. This gap in our knowledge presents a key barrier to our
understanding of dynamic cellular stress regulation and adaptation, and its functional importance in human
health where stress signaling becomes strained or co-opted in various diseases (e.g. heart disease, cancer,
neurodegeneration, type II diabetes). To investigate mechanisms by which protein sumoylation mitigates
stress-related cellular damage, our research group has been using budding yeast as a model organism to
identify specific roles for sumoylation during distinct stresses. Initially, we focused on hyperosmotic stress and
discovered that the yeast prion protein Cyc8 and its binding partner Tup1 are rapidly and transiently
sumoylated during hyperosmotic stress. In addition, we found that the Cyc8-Tup1 complex forms phase-
separated nuclear foci during the initial stages of hyperosmotic stress, and Cyc8 sumoylation is important for
the timely resolution of these foci during cellular adaptation to the stress. We hypothesize that the Cyc8-Tup1
complex's transient coalescence into liquid-liquid phase separations (LLPS) during hyperosmotic stress alters
the complex's interactions with chromatin, allowing for the optimal expression of hyperosmotic stress-response
genes. In parallel to the studies on hyperosmotic stress, we have continued exploring the role of sumoylation in
other stresses. Thus, the MIRA mechanism is ideal for our continuing studies due to its flexibility to pursue
timely and salient avenues of inquiry at the key intersection of two rapidly-evolving fields: stress-dependent
sumoylation and the kinetics of LLPS formation. Here, we propose to use a combination of genetics, cell
biology, and in vitro biochemistry to uncover both overarching principles for the functions of sumoylation across
multiple stresses and specific roles for sumoylation during distinct stresses. Our goals over the next five years
are to explore the following questions: 1) What are the functional purposes for multivalent sumoylation within a
complex during specific stress responses? 2) Are there general principles for the function(s) of sumoylation
across divergent stresses? 3) Through what mechanism(s) does sumoylation modulate stress-induced LLPS
dynamics?
项目摘要
这个MIRA提案的总体目标是了解真核生物应激的机制,
反应途径是由蛋白质的翻译后修饰调节的,
修饰符SUMO。细胞必须响应和适应物理和/或化学应激,这些应激可以不可逆地
致命地破坏重要的大分子。应激反应途径通常调节转录,
翻译、蛋白质活性或相互作用以及根据特定应激及其严重性的代谢。在
在真核细胞中,应激暴露导致特定蛋白质的类小泛素化;然而,类小泛素化的作用
在大多数压力反应仍然是不确定的。我们知识上的这一差距是我们实现这一目标的关键障碍。
了解动态细胞应激调节和适应,及其在人类中的功能重要性
健康,其中压力信号在各种疾病(例如心脏病,癌症,
神经变性、II型糖尿病)。研究蛋白质类小泛素化减轻
压力相关的细胞损伤,我们的研究小组一直使用芽殖酵母作为模式生物,
确定sumoylation在不同的压力下的具体作用。最初,我们专注于高渗应激,
发现酵母朊病毒蛋白Cyc 8和它的结合伴侣Tup 1是快速和短暂的
sumoylated在高渗胁迫。此外,我们发现Cyc 8-Tup 1复合物形成相-
在高渗胁迫的初始阶段,Cyc 8类小泛素化对于细胞核的分离很重要。
在细胞适应压力的过程中及时解决这些病灶。我们假设Cyc 8-Tup 1
在高渗胁迫期间,复合物的瞬时聚结进入液-液相分离(LLPS)改变了
复合物与染色质的相互作用,允许高渗应激反应的最佳表达
基因.在高渗应激研究的同时,我们继续探索类小泛素化在高渗应激中的作用。
其他压力。因此,MIRA机制是我们继续研究的理想选择,因为它具有灵活性
在两个快速发展的领域的关键交叉点及时和突出的调查途径:压力依赖
SUMO化和LLPS形成的动力学。在这里,我们建议使用遗传学,细胞
生物学和体外生物化学,以揭示sumoylation的功能的总体原则,
在不同的压力和特定的作用sumoylation。我们未来五年的目标
本研究旨在探讨以下问题:1)多价类小泛素化在细胞内的功能目的是什么?
在特定的应激反应中复杂吗?2)类小泛素化的功能有没有一般的原则
跨越不同的压力3)类小泛素化通过什么机制调节胁迫诱导的LLPS
动力学?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yasemin S Sancak其他文献
Yasemin S Sancak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yasemin S Sancak', 18)}}的其他基金
Molecular Dissection of Mitochondria-Organelle Interactions
线粒体-细胞器相互作用的分子解剖
- 批准号:
10851148 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Molecular Dissection of Mitochondria-Organelle Interactions
线粒体-细胞器相互作用的分子解剖
- 批准号:
10000604 - 财政年份:2020
- 资助金额:
$ 38.44万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Structural biochemistry studies on MAP kinase allosteric binding sites
MAP 激酶变构结合位点的结构生物化学研究
- 批准号:
8454542 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Structural biochemistry studies on MAP kinase allosteric binding sites
MAP 激酶变构结合位点的结构生物化学研究
- 批准号:
8099975 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Structural biochemistry studies on MAP kinase allosteric binding sites
MAP 激酶变构结合位点的结构生物化学研究
- 批准号:
8286268 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE-BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
2099053 - 财政年份:1993
- 资助金额:
$ 38.44万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE-BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
3202487 - 财政年份:1993
- 资助金额:
$ 38.44万 - 项目类别:
Biochemistry of Leukemia Virus Core Binding Factor
白血病病毒核心结合因子的生物化学
- 批准号:
7161315 - 财政年份:1993
- 资助金额:
$ 38.44万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE-BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
2099054 - 财政年份:1993
- 资助金额:
$ 38.44万 - 项目类别:
Biochemistry of Leukemia Virus Core Binding Factor
白血病病毒核心结合因子的生物化学
- 批准号:
6829155 - 财政年份:1993
- 资助金额:
$ 38.44万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
6475801 - 财政年份:1993
- 资助金额:
$ 38.44万 - 项目类别:
Biochemistry of Leukemia Virus Core Binding Factor
白血病病毒核心结合因子的生物化学
- 批准号:
8644851 - 财政年份:1993
- 资助金额:
$ 38.44万 - 项目类别: