Using Artificial Intelligence to Optimize Delivery of Weight Loss Treatment
使用人工智能优化减肥治疗的实施
基本信息
- 批准号:10400867
- 负责人:
- 金额:$ 61.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-04 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAccountabilityAddressAdultAffectAlgorithmsAmericanAreaArtificial IntelligenceAutomobile DrivingBehavior TherapyBehavioralBehavioral ResearchBinge EatingBody Weight decreasedCaloriesCaringCellular PhoneCharacteristicsCost SavingsCost-Benefit AnalysisDataEffectivenessExpert SystemsFrequenciesGenderGoalsGoldGovernmentHealth systemHourIndividualInformal Social ControlInsuranceIntakeInternetInterventionLearningMental DepressionMinorityMobile Health ApplicationModalityModelingMonitorMotivationNatureObesityObesity EpidemicOutcomeOverweightPain managementParticipantPersonsPhasePhysical activityPoliciesPopulationProfessional counselorPsychological reinforcementRaceRandomizedResourcesRoboticsSample SizeSelection for TreatmentsSystemTelephoneTestingTextText MessagingTimeTrainingTreatment EfficacyWeightacceptability and feasibilityartificial intelligence algorithmbasecare systemsclinically significantcostcost effective treatmentcost-effectiveness evaluationdesigndigitaleffective therapyimprovedimproved outcomeinnovationlearning progressionmedication complianceoverweight adultsprogramspsychologicrecruitremote deliveryresponders and non-respondersresponseskillssuccesstreatment respondersvideo chatweight loss interventionweight loss programwireless
项目摘要
Abstract
Seventy percent of American adults are overweight or obese, presenting an unprecedented challenge to the
nation’s health systems. Effective behavioral programs exist, but these programs are intensive, long-term and
require highly-trained clinicians, making them prohibitively expensive and thus limiting disseminability.
Approaches to decreasing costs include replacing highly-trained clinicians with paraprofessionals, reducing
contact frequency, and/or automating intervention. However, although these alternative interventions result in
considerably lower average weight losses, variability of weight loss is high. Specifically, and consistent with a
Supportive Accountability Model, a substantial minority of participants in high-intensity interventions receive no
benefit, while a subset of those receiving low-intensity interventions achieve clinically significant weight loss.
An ideal weight loss treatment system would enhance outcomes and reduce costs by matching each
participant to the intervention he/she needs, thus adapting to participants’ needs and conserving resources
where they are not needed. Stepped care represents one such system, but has had mixed success and suffers
from a number of shortcomings. The innovative artificial intelligence (AI) strategy of reinforcement learning
(RL) provides rapidly and repeatedly-varying features of intervention, continuously "learning" which features
provide optimal responses for which participants. Our team recently completed a pilot of an AI weight loss
system in which overweight adults received a brief in-person weight loss intervention and then were randomly
assigned to receive 3 months of non-optimized interventions (i.e., 12-minute phone calls) or an optimized
combination of phone calls, text exchanges, and automated messages, selected based on each participants’
response to each intervention as determined by weight and behavioral data. As hypothesized, we achieved
equivalent weight losses at a fraction of the time cost. The proposed study would recruit 320 overweight adults,
provide 1 month of group-based behavioral weight loss treatment and then randomize participants to either
continue to receive group-based behavioral weight loss in a remote format for 11 months (BWL-S) or to
reinforcement learning-based treatment (BWL-AI). In line with our Supportive Accountability model, BWL-AI
would vary modality, intensity and counselor skill based on continuously-monitored participant digital data. The
proposed study--the first of its kind--would expand on our pilot in several ways including sample size, duration,
and features of intervention selected by the AI system. Aims of this project are to test the hypotheses that
weight loss outcomes in BWL-AI will be equivalent to or better than BWL-S, and that the cost per participant
and per kg of lost weight will be less in BWL-AI than in BWL-S. Other include characterizing the AI system (in
terms of interventions selected), assessing feasibility and acceptability of the refined AI system, evaluating
psychological and demographic predictors of AI intervention selection and investigating differences between
responders and non-responders in how the AI system allocates resources.
摘要
70%的美国成年人超重或肥胖,这对
国家的卫生系统。有效的行为计划是存在的,但这些计划是密集的、长期的和
需要训练有素的临床医生,这使得他们的费用高得令人望而却步,从而限制了传播。
降低成本的方法包括用准专业人员取代训练有素的临床医生,减少
联系频率和/或自动干预。然而,尽管这些替代干预措施导致
平均减重幅度较低,减重变异性高。具体地说,并与
支持性问责模型,在高强度干预中,相当一部分参与者没有得到
受益,而接受低强度干预的一部分人在临床上实现了显著的体重减轻。
理想的减肥治疗系统将通过匹配每个治疗系统来提高结果并降低成本
参与者需要的干预,从而适应参与者的需求并节省资源
在不需要它们的地方。阶梯式护理就是这样一种制度,但它既有成功也有失败
从一系列的缺点中。强化学习的创新人工智能(AI)策略
(RL)提供快速且重复变化的干预功能,持续地“学习”哪些功能
为哪些参与者提供最佳回答。我们的团队最近完成了一个人工智能减肥的试点
超重成年人接受短暂的面对面减肥干预,然后随机
被分配接受3个月的非优化干预(即12分钟电话呼叫)或优化的
电话通话、文本交流和自动消息的组合,根据每个参与者的
根据体重和行为数据确定对每次干预的反应。正如假设的那样,我们实现了
同等重量的损失,时间成本的一小部分。这项拟议的研究将招募320名超重成年人,
提供为期1个月的基于团体的行为减肥治疗,然后将参与者随机分配到
继续以远程形式接受基于群体的行为减肥11个月(BWL-S)或
基于强化学习的治疗(BWL-AI)。符合我们的支持性问责模式,BWL-AI
根据持续监测的参与者数字数据,会有不同的模式、强度和辅导员技能。这个
拟议的研究--这是此类研究的第一次--将在几个方面扩大我们的试点,包括样本量、持续时间、
以及人工智能系统选择的干预特征。这个项目的目的是检验假设
BWL-AI的减肥效果将与BWL-S相当或更好,并且每个参与者的成本
每公斤体重减轻,BWL-AI将比BWL-S少。其他包括描述人工智能系统的特征(在
选定的干预措施术语),评估改进的人工智能系统的可行性和可接受性,
人工智能干预选择的心理和人口学预测因素研究
应答者和非应答者在人工智能系统如何分配资源方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan M Forman其他文献
Evan M Forman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan M Forman', 18)}}的其他基金
Using Artificial Intelligence to Optimize Delivery of Weight Loss Treatment
使用人工智能优化减肥治疗的实施
- 批准号:
10210830 - 财政年份:2021
- 资助金额:
$ 61.79万 - 项目类别:
Engaging men in weight loss with a game-based mHealth and neurotraining program
通过基于游戏的移动健康和神经训练计划让男性参与减肥
- 批准号:
10704073 - 财政年份:2021
- 资助金额:
$ 61.79万 - 项目类别:
Using Artificial Intelligence to Optimize Delivery of Weight Loss Treatment
使用人工智能优化减肥治疗的实施
- 批准号:
10627764 - 财政年份:2021
- 资助金额:
$ 61.79万 - 项目类别:
Engaging men in weight loss with a game-based mHealth and neurotraining program
通过基于游戏的移动健康和神经训练计划让男性参与减肥
- 批准号:
10491339 - 财政年份:2021
- 资助金额:
$ 61.79万 - 项目类别:
Engaging men in weight loss with a game-based mHealth and neurotraining program
通过基于游戏的移动健康和神经训练计划让男性参与减肥
- 批准号:
10366287 - 财政年份:2021
- 资助金额:
$ 61.79万 - 项目类别:
Mindfulness and acceptance-based interventions for obesity: Using a factorial design to identify the most effective components
基于正念和接受的肥胖干预措施:使用因子设计来确定最有效的组成部分
- 批准号:
10429914 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
Mindfulness and acceptance-based interventions for obesity: Using a factorial design to identify the most effective components
基于正念和接受的肥胖干预措施:使用因子设计来确定最有效的组成部分
- 批准号:
9762330 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
Mindfulness and acceptance-based interventions for obesity: Using a factorial design to identify the most effective components
基于正念和接受的肥胖干预措施:使用因子设计来确定最有效的组成部分
- 批准号:
10627997 - 财政年份:2019
- 资助金额:
$ 61.79万 - 项目类别:
Reducing Cancer Risk by Training Response Inhibition to Obesogenic Foods
通过训练抑制致肥胖食物的反应来降低癌症风险
- 批准号:
8958614 - 财政年份:2015
- 资助金额:
$ 61.79万 - 项目类别:
Reducing Cancer Risk by Training Response Inhibition to Obesogenic Foods
通过训练抑制致肥胖食物的反应来降低癌症风险
- 批准号:
9105727 - 财政年份:2015
- 资助金额:
$ 61.79万 - 项目类别:
相似海外基金
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 61.79万 - 项目类别:
Standard Grant
Attribution of Machine-generated Code for Accountability
机器生成代码的责任归属
- 批准号:
DP240102164 - 财政年份:2024
- 资助金额:
$ 61.79万 - 项目类别:
Discovery Projects
Global Governing Gaps and Accountability Traps for Solar Energy and Storage
太阳能和存储的全球治理差距和问责陷阱
- 批准号:
DP230103043 - 财政年份:2024
- 资助金额:
$ 61.79万 - 项目类别:
Discovery Projects
Collaborative Research: U.S. institutions after COVID-19: Trust, accountability, and public perceptions
合作研究:COVID-19 后的美国机构:信任、责任和公众看法
- 批准号:
2422394 - 财政年份:2024
- 资助金额:
$ 61.79万 - 项目类别:
Standard Grant
Collaborative Research: The Architecture of Accountability in 21st Century Latin America
合作研究:21 世纪拉丁美洲的问责架构
- 批准号:
2314749 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Standard Grant
Ethical Industry 4.0: Embedding Legality, Integrity and Accountability in Digital Manufacturing Ecosystems
道德工业 4.0:将合法性、诚信和责任融入数字制造生态系统
- 批准号:
2412678 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Standard Grant
Conference: Understanding Democracy, Elections, and Political Accountability
会议:了解民主、选举和政治责任
- 批准号:
2321010 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Standard Grant
The Tipuna Project: Intergenerational Healing, Settler Accountability and Decolonising Participatory Action Research in Aotearoa
Tipuna 项目:新西兰的代际疗愈、定居者责任和非殖民化参与行动研究
- 批准号:
AH/X008223/1 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Small: Accountability for Central Bank Digital Currency
协作研究:SaTC:核心:小型:中央银行数字货币的责任
- 批准号:
2325477 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Continuing Grant
DASS: A Multi-level Collaborative Design Framework for Cross-sovereignty Software Accountability
DASS:跨主权软件责任的多层次协作设计框架
- 批准号:
2317086 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Standard Grant














{{item.name}}会员




