Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
基本信息
- 批准号:10400203
- 负责人:
- 金额:$ 66.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsBenchmarkingBiologicalBiological ProcessBiomedical ResearchCancer PatientCancer Research ProjectClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsCollectionCommunitiesCompanionsComputer softwareComputing MethodologiesDataData AnalysesData SetDatabasesDiseaseDocumentationEducation and OutreachEducational workshopElectronic MailEnsureExtensible Markup LanguageFamilyGene CombinationsGene Expression ProfilingGene set enrichment analysisGenesGeneticGenetic TranscriptionGenomicsGoalsInvestigationKnock-outLettersLibrariesLiteratureMalignant NeoplasmsMethodologyMethodsModalityMolecularMolecular ProfilingNetwork-basedOpen Reading FramesPathway interactionsPersonsPharmaceutical PreparationsPhenotypeProcessProteomicsPublicationsRegulationRepressionReproducibilityResearchResearch PersonnelResourcesSamplingSourceSource CodeSpecificityTechnologyTestingTimeTrainingValidationWorkanticancer researchbasechromosomal locationdata exchangedifferential expressionexperienceexperimental studyfile formatflexibilitygenome-widegenome-wide analysisimprovedinterestknock-downknowledge baselight weightmouse modelnext generationnovel strategiesopen sourceopen source libraryoverexpressionpatient derived xenograft modelportabilityrelational databaserepositoryresponsesmall hairpin RNAsmall moleculesuccesstooltranscriptome sequencinguser-friendlyweb site
项目摘要
Project Abstract
Gene Set Enrichment Analysis (GSEA) introduced in 2003, is now standard practice for analyzing genome-
wide expression data. GSEA derives its power from identifying the activation/repression of sets of genes that
share common biological function, chromosomal location or regulation and differentiate biological phenotypes
or cellular states. This knowledge-based approach is effective in elucidating underlying biological mechanisms
and generating hypotheses for further study and experimental validation. Since 2005, we have developed,
distributed and supported a freely available GSEA software application along with a database of annotated
gene sets – the Molecular Signatures Database (MSigDB). This popular resource has more than 113,000
registered users and over 10,200 citations in the literature, and the MSigDB has almost 18,000 annotated sets.
The goal of this proposal is to continue to evolve and add value to the GSEA/MSigDB resource to best address
the needs of the cancer research community, while maintaining the high level of professional quality and strong
support that investigators have come to expect. We plan to increase the power and sensitivity of the GSEA
method and enrich the MSigDB to further accelerate the pace of genomic research. Our specific aims are:
Aim 1: Develop and deploy the next generation of the GSEA method and software to keep pace with
the needs of the cancer research community. The new core algorithm will be based on information-
theoretic approaches, guided by a collection of 100 relevant benchmarks and informed by an Advisory
Board of established cancer researchers. To facilitate the use of GSEA by researchers at all levels of
computational sophistication, we will distribute the GSEA analysis tools as both an open source code
library and a suite of user friendly, reproducible, interactive, electronic notebooks.
Aim 2: Extend the scope and specificity of the MSigDB, and evolve the underlying technology. In
collaboration with the community, we will add valuable new collections to MSigDB including signatures of
drug responses and genetic perturbations, sets for use with mouse models of cancer and PDXs, sets from
pathway and network databases, and sets for use with proteomic data analysis. The MSigDB will be
redesigned from its current XML file format and deployed as a lightweight, portable relational database that
can better support its growing size, online exploration tools, and use by investigators and other software.
Aim 3: Provide training and outreach activities for the cancer research community, and maintain
and support the GSEA software and MSigDB.
The success and popularity of the GSEA/MSigDB resource over the past decade;; our extensive experience in
developing computational methods for genomics research and delivering them as user-friendly, high quality
software;; our significant user base and many citations;; our large repository of gene sets;; and our successful
delivery of documentation and training for users make us well poised to carry out the aims of this proposal.
项目摘要
2003年引入的基因集富集分析(GSEA),现在是分析基因组DNA的标准实践。
广泛的表达数据。GSEA从识别基因组的激活/抑制中获得力量,
具有共同的生物学功能、染色体定位或调控以及区分生物学表型
这种基于知识的方法在阐明潜在的生物学机制方面是有效的
并为进一步的研究和实验验证产生假设。自2005年以来,我们开发了,
分发并支持一个免费的GSEA软件应用程序,沿着带有注释的
基因集-分子特征数据库(MSigDB)。这个流行的资源有超过113,000个
注册用户和文献中超过10,200次引用,MSigDB有近18,000个注释集。
本提案的目标是继续发展GSEA/MSigDB资源并为其增加价值,以最好地解决
癌症研究界的需求,同时保持高水平的专业素质和强大的
我们计划增加GSEA的权力和敏感性
方法和丰富MSigDB,以进一步加快基因组研究的步伐。我们的具体目标是:
目标1:开发和部署下一代GSEA方法和软件,
癌症研究界的需求。新的核心算法将基于信息-
理论方法,由100个相关基准的集合指导,并由咨询
建立癌症研究人员的委员会。为了促进各级研究人员使用GSEA,
计算的复杂性,我们将分发GSEA分析工具,作为一个开放的源代码,
库和一套用户友好的、可复制的、交互式的电子笔记本。
目标2:扩展MSigDB的范围和特性,并发展底层技术。
通过与社区的合作,我们将为MSigDB添加有价值的新集合,包括
药物反应和遗传扰动,用于癌症和PDX小鼠模型的集,
途径和网络数据库,以及用于蛋白质组学数据分析的集合。MSigDB将
从其当前的XML文件格式重新设计,并部署为轻量级、可移植的关系数据库,
可以更好地支持其不断增长的规模,在线探索工具,以及调查人员和其他软件的使用。
目标3:为癌症研究界提供培训和外展活动,并保持
并支持GSEA软件和MSigDB。
GSEA/MSigDB资源在过去十年中的成功和流行;我们在以下方面的丰富经验
为基因组学研究开发计算方法,并以用户友好、高质量的方式提供这些方法。
软件;我们的重要用户群和许多引文;我们的基因集大型库;我们的成功
为用户提供文件和培训,使我们有能力实现这一建议的目标。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JILL P. MESIROV其他文献
JILL P. MESIROV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JILL P. MESIROV', 18)}}的其他基金
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10483114 - 财政年份:2021
- 资助金额:
$ 66.63万 - 项目类别:
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10187388 - 财政年份:2021
- 资助金额:
$ 66.63万 - 项目类别:
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10704678 - 财政年份:2021
- 资助金额:
$ 66.63万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10656205 - 财政年份:2020
- 资助金额:
$ 66.63万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10409771 - 财政年份:2020
- 资助金额:
$ 66.63万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10164740 - 财政年份:2020
- 资助金额:
$ 66.63万 - 项目类别:
Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
- 批准号:
10153712 - 财政年份:2018
- 资助金额:
$ 66.63万 - 项目类别:
Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
- 批准号:
9921305 - 财政年份:2018
- 资助金额:
$ 66.63万 - 项目类别:
The Integrative Genomics Viewer (IGV): visualization supporting cancer research
综合基因组学查看器 (IGV):支持癌症研究的可视化
- 批准号:
9770558 - 财政年份:2016
- 资助金额:
$ 66.63万 - 项目类别:
The Integrative Genomics Viewer (IGV): visualization supporting cancer research
综合基因组学查看器 (IGV):支持癌症研究的可视化
- 批准号:
9186440 - 财政年份:2016
- 资助金额:
$ 66.63万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 66.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 66.63万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 66.63万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 66.63万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 66.63万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 66.63万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 66.63万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 66.63万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant