Deubiquitinases in Cell Cycle Control
细胞周期控制中的去泛素酶
基本信息
- 批准号:10403197
- 负责人:
- 金额:$ 3.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingBiochemicalCell CycleCell Cycle ProgressionCell Cycle RegulationCell ProliferationCell divisionCell physiologyCellsChromosomal StabilityDiseaseEnzymatic BiochemistryEnzymesFamilyFutureG1/S TransitionGenomeGenome StabilityKnowledgeLigaseMaintenanceMalignant NeoplasmsNormal CellOutcomePathologyPathway interactionsPatientsPeptide HydrolasesPhenotypePlayPolyubiquitinPositioning AttributeProteinsProteomeProteomicsRoleSignal TransductionSubstrate InteractionSystemTechniquesUbiquitinUbiquitinationWorkcancer cellgenome integrityloss of functionmulticatalytic endopeptidase complexovarian neoplasmtherapeutic targetubiquitin-protein ligasevirtual
项目摘要
DEUBIQUITINASES IN CELL CYCLE CONTROL
Project Summary Abstract
Ubiquitin signaling contributes to virtually all aspects of cell physiology and is implicated in aging and disease.
The covalent conjugation of polyubiquitin chains onto substrates triggers their degradation by the proteasome,
as well as various other cellular outcomes. Ubiquitination is carried out by an enzymatic cascade of ubiquitin
activators (E1), conjugators (E2) and ligases (E3). During normal cell cycles the ubiquitin system plays an
essential and conserved role in remodeling the protein landscape. Ubiquitin substrates are determined by E3
ligases and much of our understanding of ubiquitin signaling has focused on the identity, substrates and
mechanisms of E3s. However, ubiquitination is reversible, and ubiquitin is removed from substrates by catalytic
proteases termed DUBs (deubiquitinases). Despite their critical role in sculpting the proteome, much less is
known about the identity, substrates and mechanisms of DUBs in cell cycle progression, when compared to their
E3 counterparts. Nevertheless, dysregulation of both E3s and DUBs alters cell cycle progression and has
deleterious effects on genome integrity. Moreover, both E3s and DUBs can be perturbed in pathologies such as
cancer, contributing to the biochemical and phenotypic features of disease. Thus, defining the identity, substrates
and mechanisms of DUBs in cell cycle is essential to understanding how normal cell proliferation and genome
stability are maintained and coordinated. We hypothesize that DUBs are essential for cell cycle progression and
chromosome stability and are equally important as their E3 counterparts. We address this hypothesis in three
specific aims, that combine complementary techniques, and which focus on the role of DUBs in major cell cycle
transitions. In Aims 1 and 2 we investigate Cezanne/OTUD7B, an ovarian tumor family deubiquitinase, that we
recently demonstrated is cell cycle regulated and which controls the M to G1 transition. In Aim 1, we will
determine substrates for Cezanne using proteomics approaches, define mechanisms of DUB-substrate
interactions, and the role of Cezanne in the degradation of substrates at M/G1. In Aim 2, we will expand this
analysis to determine how Cezanne is itself regulated, both at the level of its abundance and activity, and then
determine how these regulatory systems influence its role in cell division. Finally, in Aim 3, we determine the
role of DUBs in a second major cell cycle transition, G1/S. The G1/S boundary is a major barrier to proliferation
in normal and cancer cell cycles and relies heavily on ubiuqitin signaling. However, little is known about DUBs
involved in G1/S. We will use computational approaches and loss-of-function screens, to identify and then
investigate DUBs that control G1/S. Collectively, this proposal will fill significant knowledge gaps in the cell cycle,
ubiquitin and DUB fields, related to roles and mechanisms of DUBs in proliferation and genome maintenance.
My lab is uniquely positioned to address these questions, illustrated by our prior work, that includes global
analysis of ubiquitination networks, detailed analysis of specific ubiquitin pathways and their role in cell cycle,
and determination of the function and enzymology of cell cycle DUBs.
细胞周期控制中的去泛素酶
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael James Emanuele其他文献
Michael James Emanuele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael James Emanuele', 18)}}的其他基金
Predoctoral Training in the Pharmacological Sciences
药理学博士前培训
- 批准号:
10405531 - 财政年份:2020
- 资助金额:
$ 3.93万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
10365189 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
10599187 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
9158827 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
10795142 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
相似海外基金
Linking Connectomics to Biochemical Trajectories of Aging: How the Human Brain Ages Differentially in Key Regions of the Default Mode Network
将连接组学与衰老的生化轨迹联系起来:人脑默认模式网络关键区域的衰老方式如何差异
- 批准号:
9447437 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Linking Connectomics to Biochemical Trajectories of Aging: How the Human Brain Ages Differentially in Key Regions of the Default Mode Network
将连接组学与衰老的生化轨迹联系起来:人脑默认模式网络关键区域的衰老方式如何差异
- 批准号:
9926788 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Linking Connectomics to Biochemical Trajectories of Aging: How the Human BrainAges Differentially in Key Regions of the Default Mode Network
将连接组学与衰老的生化轨迹联系起来:人脑在默认模式网络的关键区域中如何差异化衰老
- 批准号:
10552469 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Linking Connectomics to Biochemical Trajectories of Aging: How the Human Brain Ages Differentially in Key Regions of the Default Mode Network
将连接组学与衰老的生化轨迹联系起来:人脑默认模式网络关键区域的衰老方式如何差异
- 批准号:
10159810 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Structure-based biochemical understanding of Sestrins in aging and metabolism
基于结构的生化理解 Sestrins 在衰老和代谢中的作用
- 批准号:
9134679 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Structure-based biochemical understanding of Sestrins in aging and metabolism
基于结构的生化理解 Sestrins 在衰老和代谢中的作用
- 批准号:
8953514 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Biochemical Analysis of a p53 Isoform that Accelerates Mammalian Aging
加速哺乳动物衰老的 p53 异构体的生化分析
- 批准号:
7773565 - 财政年份:2010
- 资助金额:
$ 3.93万 - 项目类别:
Biochemical Analysis of a p53 Isoform that Accelerates Mammalian Aging
加速哺乳动物衰老的 p53 异构体的生化分析
- 批准号:
8016662 - 财政年份:2010
- 资助金额:
$ 3.93万 - 项目类别:
Neural and Biochemical Mechanisms of Cognitive Aging
认知衰老的神经和生化机制
- 批准号:
8316225 - 财政年份:2009
- 资助金额:
$ 3.93万 - 项目类别:
Neural and Biochemical Mechanisms of Cognitive Aging
认知衰老的神经和生化机制
- 批准号:
7930617 - 财政年份:2009
- 资助金额:
$ 3.93万 - 项目类别:














{{item.name}}会员




