Deubiquitinases in Cell Cycle Control
细胞周期控制中的去泛素酶
基本信息
- 批准号:10559372
- 负责人:
- 金额:$ 7.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingBindingBiochemicalBiochemistryCardiac healthCell CycleCell Cycle ProgressionCell Cycle RegulationCell ProliferationCell divisionCell physiologyCellsCellular biologyChromosomal StabilityChromosome SegregationDataData SetDiseaseDrug TargetingEnzymatic BiochemistryEnzymesFamilyFutureG1/S TransitionGenomeGenome StabilityHealthHumanInfectionKineticsKnowledgeLigaseMaintenanceMalignant NeoplasmsMitoticMitotic CheckpointMolecular BiologyNormal CellOutcomePathologicPathologyPathway interactionsPatientsPeptide HydrolasesPhenotypePlayPolyubiquitinPositioning AttributeProteinsProteomeProteomicsRegulationRoleS phaseSignal TransductionSpecific qualifier valueSubstrate InteractionSystemTechniquesTherapeuticUbiquitinUbiquitinationWorkbasecancer cellgenome integrityin silicoinhibitorloss of functionmulticatalytic endopeptidase complexnervous system disorderovarian neoplasmprotein degradationtherapeutic targetubiquitin-protein ligasevirtual
项目摘要
DEUBIQUITINASES IN CELL CYCLE CONTROL
Project Summary
Ubiquitin signaling contributes to virtually all aspects of cell physiology and is implicated in aging and disease.
The covalent conjugation of polyubiquitin chains onto substrates triggers their degradation by the proteasome,
as well as various other cellular outcomes. Ubiquitination is carried out by an enzymatic cascade of ubiquitin
activators (E1), conjugators (E2) and ligases (E3). During normal cell cycles the ubiquitin system plays an
essential and conserved role in remodeling the protein landscape. Ubiquitin substrates are determined by E3
ligases and much of our understanding of ubiquitin signaling has focused on the identity, substrates and
mechanisms of E3s. However, ubiquitination is reversible, and ubiquitin is removed from substrates by catalytic
proteases termed DUBs (deubiquitinases). Despite their critical role in sculpting the proteome, much less is
known about the identity, substrates and mechanisms of DUBs in cell cycle progression, when compared to their
E3 counterparts. Nevertheless, dysregulation of both E3s and DUBs alters cell cycle progression and has
deleterious effects on genome integrity. Moreover, both E3s and DUBs can be perturbed in pathologies such as
cancer, contributing to the biochemical and phenotypic features of disease. Thus, defining the identity, substrates
and mechanisms of DUBs in cell cycle is essential to understanding how normal cell proliferation and genome
stability are maintained and coordinated. We hypothesize that DUBs are essential for cell cycle progression and
chromosome stability and are equally important as their E3 counterparts. We address this hypothesis in three
specific aims, that combine complementary techniques, and which focus on the role of DUBs in major cell cycle
transitions. In Aims 1 and 2 we investigate Cezanne/OTUD7B, an ovarian tumor family deubiquitinase, that we
recently demonstrated is cell cycle regulated and which controls the M to G1 transition. In Aim 1, we will
determine substrates for Cezanne using proteomics approaches, define mechanisms of DUB-substrate
interactions, and the role of Cezanne in the degradation of substrates at M/G1. In Aim 2, we will expand this
analysis to determine how Cezanne is itself regulated, both at the level of its abundance and activity, and then
determine how these regulatory systems influence its role in cell division. Finally, in Aim 3, we determine the
role of DUBs in a second major cell cycle transition, G1/S. The G1/S boundary is a major barrier to proliferation
in normal and cancer cell cycles and relies heavily on ubiuqitin signaling. However, little is known about DUBs
involved in G1/S. We will use computational approaches and loss-of-function screens, to identify and then
investigate DUBs that control G1/S. Collectively, this proposal will fill significant knowledge gaps in the cell cycle,
ubiquitin and DUB fields, related to roles and mechanisms of DUBs in proliferation and genome maintenance.
My lab is uniquely positioned to address these questions, illustrated by our prior work, that includes global
analysis of ubiquitination networks, detailed analysis of specific ubiquitin pathways and their role in cell cycle,
and determination of the function and enzymology of cell cycle DUBs.
细胞周期调控中的脱泛素酶
项目摘要
泛素信号对细胞生理学的各个方面都有影响,并与衰老和疾病有关。
多泛素链在底物上的共价结合引发了蛋白酶体对它们的降解,
以及其他各种细胞结果。泛素化是通过泛素级联酶来实现的
激活子(E1)、接合子(E2)和连接酶(E3)。在正常的细胞周期中,泛素系统发挥着
在重塑蛋白质格局中起着至关重要的和保守的作用。泛素底物由E3决定
连接酶和我们对泛素信号的大部分理解都集中在身份、底物和
E3S的作用机制。然而,泛素化是可逆的,泛素是通过催化从底物中去除的
被称为DUBS(脱泛素酶)的蛋白酶。尽管它们在塑造蛋白质组中起着关键作用,但更少的是
已知DUBS在细胞周期进程中的身份、底物和机制,当与它们的
E3对应方。然而,E3和DUBS的失调改变了细胞周期进程,并
对基因组完整性的有害影响。此外,E3和DUB都可以在病理上受到干扰,例如
癌症,导致疾病的生化和表型特征。因此,定义身份、底物
而DUBS在细胞周期中的作用机制对于理解正常的细胞增殖和基因组
保持和协调稳定。我们假设DUBS对细胞周期进程和
染色体的稳定性和它们的E3对应物同样重要。我们从三个方面阐述了这一假说
特定的目标,结合互补的技术,并专注于DUB在主要细胞周期中的作用
过渡。在目标1和2中,我们研究了Cezanne/OTUD7B,一种卵巢肿瘤去泛素酶家族,我们
最近证明是细胞周期调节的,它控制着M向G1的转变。在目标1中,我们将
用蛋白质组学方法确定塞尚的底物,确定复制底物的作用机制
相互作用,以及塞尚在M/G1底物降解中的作用。在目标2中,我们将扩展这一点
分析以确定Cezanne本身是如何受到监管的,无论是在其丰度和活动水平上,然后
确定这些调控系统如何影响其在细胞分裂中的作用。最后,在目标3中,我们确定
DUBS在第二个重要的细胞周期转换G1/S中的作用G1/S边界是细胞增殖的主要障碍
在正常和癌细胞周期中,并且严重依赖泛素信号转导。然而,人们对dubs知之甚少。
参与了G1/S。我们将使用计算方法和功能丧失筛查,以确定和然后
研究控制G1/S的DUB,总的来说,这一建议将填补细胞周期中显著的知识空白,
泛素和DUB域,与DUBS在增殖和基因组维持中的作用和机制有关。
我的实验室处于独特的位置来解决这些问题,我们之前的工作说明了这一点,其中包括全球
分析泛素化网络,详细分析特定的泛素途径及其在细胞周期中的作用,
以及细胞周期DUBS的功能和酶学的测定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael James Emanuele其他文献
Michael James Emanuele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael James Emanuele', 18)}}的其他基金
Predoctoral Training in the Pharmacological Sciences
药理学博士前培训
- 批准号:
10405531 - 财政年份:2020
- 资助金额:
$ 7.86万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
10365189 - 财政年份:2016
- 资助金额:
$ 7.86万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
10599187 - 财政年份:2016
- 资助金额:
$ 7.86万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
9158827 - 财政年份:2016
- 资助金额:
$ 7.86万 - 项目类别:
SCF Ubiquitin Ligases in Cell Cycle Control and Chromosome Stability
SCF 泛素连接在细胞周期控制和染色体稳定性中的作用
- 批准号:
10795142 - 财政年份:2016
- 资助金额:
$ 7.86万 - 项目类别:
相似海外基金
RUI: CAS-MNP: Molecular Behavior at Colloidal/Aqueous Interfaces of Heterogeneous Nano- and Micro-Plastics - Binding Interactions and Effect of Aging
RUI:CAS-MNP:异质纳米和微米塑料胶体/水界面的分子行为 - 结合相互作用和老化效应
- 批准号:
2304814 - 财政年份:2023
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Uncovering Neural Substrates of Diminished Temporal Binding Capacity in Aging
揭示衰老过程中颞结合能力下降的神经基质
- 批准号:
10511354 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Uncovering Neural Substrates of Diminished Temporal Binding Capacity in Aging
揭示衰老过程中颞结合能力下降的神经基质
- 批准号:
10708806 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
The neural mechanisms underlying hyper-binding in aging
衰老过程中超结合的神经机制
- 批准号:
547766-2020 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10211598 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10661772 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
The neural mechanisms underlying hyper-binding in aging
衰老过程中超结合的神经机制
- 批准号:
547766-2020 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10483171 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
A pathophysiological significance of receptor-binding factor in aging-associated cerebral cardiovascular disease
受体结合因子在衰老相关脑心血管疾病中的病理生理学意义
- 批准号:
20K07786 - 财政年份:2020
- 资助金额:
$ 7.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The neural mechanisms underlying hyper-binding in aging
衰老过程中超结合的神经机制
- 批准号:
547766-2020 - 财政年份:2020
- 资助金额:
$ 7.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral