Enhancing low count PET and SPECT imaging with deep learning methods
利用深度学习方法增强低计数 PET 和 SPECT 成像
基本信息
- 批准号:10403701
- 负责人:
- 金额:$ 8.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:90YAdoptionCancer EtiologyCessation of lifeClinicClinical TrialsDiseaseDoseEnsureExternal Beam Radiation TherapyFoundationsFutureGoalsImageJoint repairLesionLiver parenchymaMapsMathematicsMethodsMicrospheresModelingPET/CT scanParentsPatient-Focused OutcomesPatientsPhase I Clinical TrialsPhysicsPositron-Emission TomographyPrimary carcinoma of the liver cellsProcessPublic HealthRadiation ToleranceRadiation therapyRadioembolizationRadionuclide therapySafetyTestingToxic effectTrainingbaseclinical practiceconvolutional neural networkdeep learningdenoisingdosimetryimprovedinnovationinternal radiationlearning strategynext generationnovelnovel strategiesphase II trialprospectiveradiation deliveryreconstructionresponsesingle photon emission computed tomographystandard of caretooltrial designtumor
项目摘要
Abstract (Parent)
Selective internal radiation therapy (SIRT) with preferential delivery of 90Y microspheres to target lesions has
shown promising response rates with limited toxicity in the treatment of hepatocellular (HCC), the second leading
cause of cancer death in the world. However, to achieve more durable responses, there is much room to
improve/adapt the treatment to ensure that all lesions and lesion sub-regions receive adequate radiation delivery.
While externally delivered stereotactic body radiation therapy (SBRT) is well suited for smaller solitary HCC, its
application for larger or multifocal disease is challenged by the radiation tolerance of the normal liver
parenchyma. A dosimetry guided combined approach that exploits complementary advantages of internal and
external radiation delivery can be expected to improve treatment of HCC. To make this transition, however,
prospective clinical trials establishing safety are needed. Furthermore, for routine clinic use, accurate and fast
voxel-level dose estimation in internal radionuclide therapy, that lags behind external beam therapy dosimetry,
is still needed. Our long-term goal is to improve the efficacy of radiation therapy with personalized dosimetry
guided treatment. Our objective in this application is to demonstrate that it is possible to use 90Y imaging based
absorbed dose estimates after SIRT to safely deliver external radiation to target regions (voxels) that are
predicted to be underdosed and to develop deep learning based tools to make voxel-level internal dose
estimation practical for routine clinic use. Specifically, in Aim 1, we will perform a Phase 1 clinical trial in HCC
patients where we will take the novel approach of using the 90Y PET/CT derived absorbed dose map after SIRT
to deliver SBRT to tumor regions predicted to be underdosed based on previously established dose-response
models. The primary objective of the trial is to obtain estimates of safety of combined SIRT+SBRT for future
Phase II trial design. In parallel, in Aim 2, building on promising initial results we will develop novel deep learning
based tools for 90Y PET/CT and SPECT/CT reconstruction, joint reconstruction-segmentation and scatter
estimation under the low count-rate setting, typical for 90Y. These methods have a physics/mathematics
foundation, where convolutional neural networks (CNNs) are included within the iterative reconstruction process,
instead of post-reconstruction denoising. In Aim 3, we will develop a CNN for fast voxel-level dosimetry and
combine with the CNNs of Aim 2 to develop an innovative end-to-end framework with unified dosimetry-task
based training. At the end of this study, we will be ready to use the new deep learning tools in a Phase II trial to
demonstrate enhanced efficacy with SIRT+SBRT compared with SIRT alone and advance towards our long-
term goal. This will accelerate adoption of these next-generation tools in clinical practice and will have a
significant positive impact because treatment based on patient specific dosimetry will substantially improve
efficacy, compared with current standard practice in SIRT. Although we focus on 90Y SIRT, our tools will be
applicable in radionuclide therapy in general, a rapidly advancing treatment option.
抽象(父)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUNI K DEWARAJA其他文献
YUNI K DEWARAJA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUNI K DEWARAJA', 18)}}的其他基金
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
10165668 - 财政年份:2020
- 资助金额:
$ 8.28万 - 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
10620806 - 财政年份:2020
- 资助金额:
$ 8.28万 - 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
10413036 - 财政年份:2020
- 资助金额:
$ 8.28万 - 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
9973682 - 财政年份:2020
- 资助金额:
$ 8.28万 - 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
- 批准号:
10406365 - 财政年份:2016
- 资助金额:
$ 8.28万 - 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
- 批准号:
10669186 - 财政年份:2016
- 资助金额:
$ 8.28万 - 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
- 批准号:
10206138 - 财政年份:2016
- 资助金额:
$ 8.28万 - 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
- 批准号:
10052989 - 财政年份:2016
- 资助金额:
$ 8.28万 - 项目类别:
POST-TRACER AND POST-THERAPY IMAGING USING A NEW SPECT-CT INTEGRATED SYSTEM FOR
使用新的 SPECT-CT 集成系统进行示踪剂后和治疗后成像
- 批准号:
7376642 - 财政年份:2006
- 资助金额:
$ 8.28万 - 项目类别:
MONTE CARLO SIMULATION OF HIGH ENERGY PHOTON IMAGING
高能光子成像的蒙特卡罗模拟
- 批准号:
6377075 - 财政年份:1999
- 资助金额:
$ 8.28万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 8.28万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 8.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 8.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.28万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 8.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.28万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 8.28万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 8.28万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 8.28万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 8.28万 - 项目类别:
Standard Grant














{{item.name}}会员




