Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment

用于个性化癌症治疗的 Yttrium-90 成像和剂量测定

基本信息

  • 批准号:
    10052989
  • 负责人:
  • 金额:
    $ 67.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Abstract Selective internal radiation therapy (SIRT) with preferential delivery of 90Y microspheres to target lesions has shown promising response rates with limited toxicity in the treatment of hepatocellular (HCC), the second leading cause of cancer death in the world. However, to achieve more durable responses, there is much room to improve/adapt the treatment to ensure that all lesions and lesion sub-regions receive adequate radiation delivery. While externally delivered stereotactic body radiation therapy (SBRT) is well suited for smaller solitary HCC, its application for larger or multifocal disease is challenged by the radiation tolerance of the normal liver parenchyma. A dosimetry guided combined approach that exploits complementary advantages of internal and external radiation delivery can be expected to improve treatment of HCC. To make this transition, however, prospective clinical trials establishing safety are needed. Furthermore, for routine clinic use, accurate and fast voxel-level dose estimation in internal radionuclide therapy, that lags behind external beam therapy dosimetry, is still needed. Our long-term goal is to improve the efficacy of radiation therapy with personalized dosimetry guided treatment. Our objective in this application is to demonstrate that it is possible to use 90Y imaging based absorbed dose estimates after SIRT to safely deliver external radiation to target regions (voxels) that are predicted to be underdosed and to develop deep learning based tools to make voxel-level internal dose estimation practical for routine clinic use. Specifically, in Aim 1, we will perform a Phase 1 clinical trial in HCC patients where we will take the novel approach of using the 90Y PET/CT derived absorbed dose map after SIRT to deliver SBRT to tumor regions predicted to be underdosed based on previously established dose-response models. The primary objective of the trial is to obtain estimates of safety of combined SIRT+SBRT for future Phase II trial design. In parallel, in Aim 2, building on promising initial results we will develop novel deep learning based tools for 90Y PET/CT and SPECT/CT reconstruction, joint reconstruction-segmentation and scatter estimation under the low count-rate setting, typical for 90Y. These methods have a physics/mathematics foundation, where convolutional neural networks (CNNs) are included within the iterative reconstruction process, instead of post-reconstruction denoising. In Aim 3, we will develop a CNN for fast voxel-level dosimetry and combine with the CNNs of Aim 2 to develop an innovative end-to-end framework with unified dosimetry-task based training. At the end of this study, we will be ready to use the new deep learning tools in a Phase II trial to demonstrate enhanced efficacy with SIRT+SBRT compared with SIRT alone and advance towards our long- term goal. This will accelerate adoption of these next-generation tools in clinical practice and will have a significant positive impact because treatment based on patient specific dosimetry will substantially improve efficacy, compared with current standard practice in SIRT. Although we focus on 90Y SIRT, our tools will be applicable in radionuclide therapy in general, a rapidly advancing treatment option.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YUNI K DEWARAJA其他文献

YUNI K DEWARAJA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YUNI K DEWARAJA', 18)}}的其他基金

Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
  • 批准号:
    10165668
  • 财政年份:
    2020
  • 资助金额:
    $ 67.06万
  • 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
  • 批准号:
    10620806
  • 财政年份:
    2020
  • 资助金额:
    $ 67.06万
  • 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
  • 批准号:
    10413036
  • 财政年份:
    2020
  • 资助金额:
    $ 67.06万
  • 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
  • 批准号:
    9973682
  • 财政年份:
    2020
  • 资助金额:
    $ 67.06万
  • 项目类别:
Enhancing low count PET and SPECT imaging with deep learning methods
利用深度学习方法增强低计数 PET 和 SPECT 成像
  • 批准号:
    10403701
  • 财政年份:
    2016
  • 资助金额:
    $ 67.06万
  • 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
  • 批准号:
    10669186
  • 财政年份:
    2016
  • 资助金额:
    $ 67.06万
  • 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
  • 批准号:
    10406365
  • 财政年份:
    2016
  • 资助金额:
    $ 67.06万
  • 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
  • 批准号:
    10206138
  • 财政年份:
    2016
  • 资助金额:
    $ 67.06万
  • 项目类别:
POST-TRACER AND POST-THERAPY IMAGING USING A NEW SPECT-CT INTEGRATED SYSTEM FOR
使用新的 SPECT-CT 集成系统进行示踪剂后和治疗后成像
  • 批准号:
    7376642
  • 财政年份:
    2006
  • 资助金额:
    $ 67.06万
  • 项目类别:
MONTE CARLO SIMULATION OF HIGH ENERGY PHOTON IMAGING
高能光子成像的蒙特卡罗模拟
  • 批准号:
    6377075
  • 财政年份:
    1999
  • 资助金额:
    $ 67.06万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了