The Wilmer Institute Mentored Clinician Scientist Scholar Program-Supplement
威尔默研究所指导临床医生科学家学者计划-补充
基本信息
- 批准号:10405937
- 负责人:
- 金额:$ 8.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressArtificial IntelligenceChargeDataData SetEarEducational CurriculumEnsureEyeFAIR principlesFosteringGuidelinesImageInstitutesInstitutionLearningMachine LearningMassachusettsMedicineMentorsModelingNCI Scholars ProgramOphthalmologyPerformanceReproducibilityResearchScientistSeriesStandardizationTrainingUniversitiesValidationdata curationdeep learningimprovedintelligent algorithmlectures
项目摘要
PROJECT SUMMARY/ ABSTRACT
Artificial intelligence (AI), in the form of machine learning (ML) and deep learning (DL),
has revolutionized the field of medicine, especially in subspecialties with access to a
large number of images, such as ophthalmology. While promising, the application of
ML/AI in ophthalmology is limited by the lack of clear guidelines on how to extract
ophthalmic data, convert these data into a form that is usable for ML/AI model training
and ensure these data are adhering to the principles of FAIR (Findability, Accessibility,
Interoperability, and Reuse). Our proposal aims to address these limitations by
delineating the best practices for data curation via an online lecture series that will be
available free of charge to the public, once the curriculum is assessed and validated by
another academic institution (Harvard/Massachusetts Eye and Ear Infirmary).
If successful, the proposal will be impactful, as it will:
1. Accelerate reproducible research in ML/AI by enabling the creation of
standardized ML/AI-ready and FAIR datasets.
2. Disseminate the best practices in data curation beyond Johns Hopkins University
(JHU), as the online lectures will be made free of charge to the public.
3. Foster the creation of standardized multi-institutional datasets that will improve
both performance and generalizability of ML/AI algorithms in ophthalmology, by
enabling federated learning approaches and external validation of models.
项目总结/摘要
人工智能(AI),以机器学习(ML)和深度学习(DL)的形式,
已经彻底改变了医学领域,特别是在亚专业领域,
大量的图像,如眼科。尽管前景看好,
眼科学中的ML/AI由于缺乏关于如何提取的明确指南而受到限制
眼科数据,将这些数据转换为可用于ML/AI模型训练的形式
并确保这些数据符合公平原则(可查找性,可访问性,
互操作性和重用)。我们的提案旨在通过以下方式解决这些限制
通过在线讲座系列描述数据策展的最佳实践,
免费向公众提供,一旦课程被评估和验证,
另一个学术机构(哈佛/马萨诸塞州眼耳医院)。
如果成功,该提案将产生影响,因为它将:
1.加速ML/AI中的可重复研究,
标准化ML/AI就绪和FAIR数据集。
2.在约翰霍普金斯大学之外传播数据策展的最佳实践
(JHU),因为网上讲座将免费向公众提供。
3.促进创建标准化的多机构数据集,
ML/AI算法在眼科学中的性能和可推广性,
支持联合学习方法和模型的外部验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harry Alan Quigley其他文献
Harry Alan Quigley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harry Alan Quigley', 18)}}的其他基金
The Wilmer Institute Mentored Clinical-Scientist Scholar Program
威尔默研究所指导临床科学家学者计划
- 批准号:
8088099 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
The Wilmer Institute Mentored Clinical-Scientist Scholar Program
威尔默研究所指导临床科学家学者计划
- 批准号:
8509693 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
Wilmer Inst. Mentored Clinical Research Scholar Program
威尔默研究所。
- 批准号:
7064236 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
The Wilmer Institute Mentored Clinician Scientist Scholar Program
威尔默研究所指导临床科学家学者计划
- 批准号:
9274400 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
The Wilmer Institute Mentored Clinical-Scientist Scholar Program
威尔默研究所指导临床科学家学者计划
- 批准号:
7844468 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
The Wilmer Institute Mentored Clinical-Scientist Scholar Program
威尔默研究所指导临床科学家学者计划
- 批准号:
8293266 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
The Wilmer Institute Mentored Clinician Scientist Scholar Program
威尔默研究所指导临床科学家学者计划
- 批准号:
10203987 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
Wilmer Inst. Mentored Clinical Research Scholar Program
威尔默研究所。
- 批准号:
6570130 - 财政年份:2003
- 资助金额:
$ 8.64万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




