Deep Learning Approaches to Risk Stratification in Acute Gastrointestinal Bleeding

急性胃肠出血风险分层的深度学习方法

基本信息

  • 批准号:
    10404099
  • 负责人:
  • 金额:
    $ 19.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Acute gastrointestinal bleeding accounts for over 2.2 million hospital days and 19.2 billion dollars of medical charges annually. 52% to 55% of patients with acute gastrointestinal bleeding are unnecessarily hospitalized, leading to wasted resources. Although risk stratification of patients presenting with gastrointestinal bleeding is recommended, risk-assessment scoring systems are not commonly used in practice, have sub- optimal performance, may be applied incorrectly, and are not easily updated. Most current risk scores were designed for use based on the location of the bleeding source: upper or lower gastrointestinal tract. However, the location of the bleeding source is not always clear at presentation. A risk score that bases initial assessment on presenting symptoms (e.g., hematemesis, melena, hematochezia) is more relevant and useful in clinical practice. The electronic health record can be used to identify patients with acute gastrointestinal bleeding symptoms and extract clinical data to automatically calculate risk scores that are made available to providers. Machine learning (field of study that gives computers the ability to learn without being explicitly programmed), particularly deep learning using neural networks (collection of nodes that process and transmit information), can create electronic health record-based models that perform better than clinical risk scores for gastrointestinal bleeding and are well-suited for learning from new data. This proposal will use deep learning tools on electronic health record data to decrease unnecessary hospitalization in patients with acute gastrointestinal bleeding by identifying low risk patients. The goals are to 1) Develop and validate an accurate and clinically useful deep learning algorithm for initial risk stratification superior to existing clinical risk scores 2) Develop and validate a dynamic deep learning tool to model risk over time, and 3) Pilot the best performing algorithms in the electronic health record. Deep learning algorithms will be developed using a dataset of electronic health record data of 7,000 patients with acute gastrointestinal bleeding from two academic hospitals in the Yale-New Haven Health System. Validation will be performed on a separate dataset of patients at Partners Healthcare in Boston, Massachusetts. Neural network approaches will be applied to patients’ data updated over time to evaluate the trajectory towards requiring transfusion of red blood cells. Finally, a pilot study will implement the best-performing algorithms in the electronic health record for a 3-month period to test feasibility of deployment and acceptability to providers and patients. Planned coursework includes deep learning with biomedical data, risk assessment and longitudinal analysis. This work has potential to generate cost savings through better integrated risk stratification of patients presenting with overt gastrointestinal bleeding. To meet the research and educational goals of this proposal, the mentorship team includes a primary mentor in gastrointestinal bleeding and co-mentors in deep learning, electronic health record-based clinical trial design of prognostic algorithms, and implementation science.
项目摘要 急性胃肠道出血占220多万住院日和192亿美元的医疗费用。 每年的医疗费用。52%至55%的急性消化道出血患者不必要 住院,导致资源浪费。虽然对出现胃肠道疾病的患者进行风险分层, 出血是推荐的,风险评估评分系统在实践中并不常用, 最佳性能,可能会被错误地应用,并且不容易更新。 大多数当前的风险评分是根据出血源的位置设计的: 下胃肠道然而,出血源的位置并不总是明确的介绍。一 基于呈现症状的初始评估的风险评分(例如,呕血、黑便、便血), 在临床实践中更相关和有用。电子健康记录可用于识别患者, 急性胃肠道出血症状,并提取临床数据,以自动计算风险评分, 提供给供应商。机器学习(使计算机具有学习能力的研究领域, 被显式编程),特别是使用神经网络的深度学习(处理 并传输信息),可以创建基于电子健康记录的模型,其性能优于临床风险 消化道出血评分,非常适合从新数据中学习。 该提案将在电子健康记录数据上使用深度学习工具,以减少不必要的 通过识别低风险患者,对急性消化道出血患者进行住院治疗。目标是1) 开发并验证准确且临床上有用的深度学习算法,用于初始风险分层上级 2)开发并验证动态深度学习工具,以随着时间的推移对风险进行建模, 3)在电子健康记录中试用性能最佳的算法。深度学习算法将被开发 使用来自两个国家的7,000名急性胃肠道出血患者的电子健康记录数据集, 耶鲁-纽黑文卫生系统的学术医院。将对单独的数据集进行验证 在马萨诸塞州波士顿的伙伴医疗中心的病人。神经网络方法将应用于 随着时间的推移更新患者数据,以评估需要输注红细胞的轨迹。最后, 一项试点研究将在电子健康记录中实施为期3个月的最佳性能算法 测试部署的可行性以及供应商和患者的可接受性。计划的课程包括深度 学习生物医学数据、风险评估和纵向分析。 这项工作有可能通过更好地对患者进行综合风险分层来节省成本 出现明显的胃肠道出血为了实现这项建议的研究和教育目标, 导师团队包括消化道出血的主要导师和深度学习的共同导师, 基于电子健康记录的临床试验预后算法的设计和实现科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis Shung其他文献

Dennis Shung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis Shung', 18)}}的其他基金

Deep Learning Approaches to Risk Stratification in Acute Gastrointestinal Bleeding
急性胃肠出血风险分层的深度学习方法
  • 批准号:
    10215914
  • 财政年份:
    2021
  • 资助金额:
    $ 19.39万
  • 项目类别:
Deep Learning Approaches to Risk Stratification in Acute Gastrointestinal Bleeding
急性胃肠出血风险分层的深度学习方法
  • 批准号:
    10696199
  • 财政年份:
    2021
  • 资助金额:
    $ 19.39万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 19.39万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了