Deep Learning Approaches to Risk Stratification in Acute Gastrointestinal Bleeding
急性胃肠出血风险分层的深度学习方法
基本信息
- 批准号:10696199
- 负责人:
- 金额:$ 19.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAcute Renal Failure with Renal Papillary NecrosisAlgorithmsArtificial IntelligenceAssessment toolBloodBostonCaringChargeClinicalClinical DataClinical InvestigatorClinical Trials DesignCollectionCommunitiesComputersCost SavingsDataData SetDatabasesDiagnosisEducationElectronic Health RecordErythrocyte TransfusionFecesGastrointestinal DiseasesGastrointestinal HemorrhageGoalsHealth systemHealthcareHematocheziaHemorrhageHemostatic AgentsHospital CostsHospitalizationHospitalsInterventionLearningLength of StayLocationLower Gastrointestinal TractMachine LearningMassachusettsMedicalMedical centerMelenaMentorsMentorshipModelingOutcomeOutpatientsPatient TriagePatient riskPatient-Focused OutcomesPatientsPerformancePilot ProjectsProcessProviderRecommendationReportingResearchResearch PersonnelResourcesRiskRisk AssessmentSepsisSiteSourceStandardizationSymptomsSystemTimeTrainingTransfusionUnited States National Institutes of HealthUpdateValidationWorkacute symptombaseclinical decision supportclinical practiceclinical riskcomputer sciencedata modelingdeep learningdeep learning algorithmdeep learning modeldesignelectronic health record systemfeasibility testingfield studygastrointestinalgastrointestinal symptomhealth assessmentimplementation scienceinsightlongitudinal analysismachine learning algorithmmachine learning modelmachine learning predictionneural networkoutcome predictionpatient health informationpatient stratificationpoint of carepredictive modelingprognostic algorithmprogression riskprospectiverisk stratificationtime usetooltool developmenttransmission processwastingworking group
项目摘要
PROJECT SUMMARY
Acute gastrointestinal bleeding accounts for over 2.2 million hospital days and 19.2 billion dollars of
medical charges annually. 52% to 55% of patients with acute gastrointestinal bleeding are unnecessarily
hospitalized, leading to wasted resources. Although risk stratification of patients presenting with gastrointestinal
bleeding is recommended, risk-assessment scoring systems are not commonly used in practice, have sub-
optimal performance, may be applied incorrectly, and are not easily updated.
Most current risk scores were designed for use based on the location of the bleeding source: upper or
lower gastrointestinal tract. However, the location of the bleeding source is not always clear at presentation. A
risk score that bases initial assessment on presenting symptoms (e.g., hematemesis, melena, hematochezia) is
more relevant and useful in clinical practice. The electronic health record can be used to identify patients with
acute gastrointestinal bleeding symptoms and extract clinical data to automatically calculate risk scores that are
made available to providers. Machine learning (field of study that gives computers the ability to learn without
being explicitly programmed), particularly deep learning using neural networks (collection of nodes that process
and transmit information), can create electronic health record-based models that perform better than clinical risk
scores for gastrointestinal bleeding and are well-suited for learning from new data.
This proposal will use deep learning tools on electronic health record data to decrease unnecessary
hospitalization in patients with acute gastrointestinal bleeding by identifying low risk patients. The goals are to 1)
Develop and validate an accurate and clinically useful deep learning algorithm for initial risk stratification superior
to existing clinical risk scores 2) Develop and validate a dynamic deep learning tool to model risk over time, and
3) Pilot the best performing algorithms in the electronic health record. Deep learning algorithms will be developed
using a dataset of electronic health record data of 7,000 patients with acute gastrointestinal bleeding from two
academic hospitals in the Yale-New Haven Health System. Validation will be performed on a separate dataset
of patients at Partners Healthcare in Boston, Massachusetts. Neural network approaches will be applied to
patients’ data updated over time to evaluate the trajectory towards requiring transfusion of red blood cells. Finally,
a pilot study will implement the best-performing algorithms in the electronic health record for a 3-month period
to test feasibility of deployment and acceptability to providers and patients. Planned coursework includes deep
learning with biomedical data, risk assessment and longitudinal analysis.
This work has potential to generate cost savings through better integrated risk stratification of patients
presenting with overt gastrointestinal bleeding. To meet the research and educational goals of this proposal, the
mentorship team includes a primary mentor in gastrointestinal bleeding and co-mentors in deep learning,
electronic health record-based clinical trial design of prognostic algorithms, and implementation science.
项目总结
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Shung其他文献
Dennis Shung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Shung', 18)}}的其他基金
Deep Learning Approaches to Risk Stratification in Acute Gastrointestinal Bleeding
急性胃肠出血风险分层的深度学习方法
- 批准号:
10215914 - 财政年份:2021
- 资助金额:
$ 19.39万 - 项目类别:
Deep Learning Approaches to Risk Stratification in Acute Gastrointestinal Bleeding
急性胃肠出血风险分层的深度学习方法
- 批准号:
10404099 - 财政年份:2021
- 资助金额:
$ 19.39万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 19.39万 - 项目类别:
Standard Grant