Dynamics of membrane tension and synaptic vesicle recycling

膜张力和突触小泡回收的动力学

基本信息

  • 批准号:
    9808543
  • 负责人:
  • 金额:
    $ 46.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Information in the nervous system is relayed mostly at synapses, where neurotransmitter is released with great temporal precision from a presynaptic terminal on to a post-synaptic cell via the fusion of membrane bound synaptic vesicles (SVs) with the cell membrane, in a process called exocytosis. The components of these SVs are subsequently retrieved via endocytosis and recycled for reuse. This grant aims to understand the interplay between SV recycling and membrane tension gradients and associated membrane flows. In neurons and neuroendocrine cells, both exocytosis and endocytosis are influenced by osmotic swelling or shrinking, suggesting they are influenced by membrane tension, 𝜎. Conversely, membrane addition to the presynaptic terminal via exocytosis is expected to lower 𝜎, while endocytosis should restore it. In addition, membrane tension has been suggested to be one of the possible signals for coupling exocytosis to endocytosis. However, despite these key roles, there are no measurements of membrane tension in synaptic terminals and how tension changes are related to exo-endocytosis is not known, mainly due to technical difficulties. The best method to probe 𝜎 is to pull a thin membrane tether from the cell surface using optical tweezers, manipulating a 1-3 μm diameter bead as a handle. The bead's displacement from the trap center provides the tether force, which reflects 𝜎. However, most terminals are small and are tightly coupled to post-synaptic structures, making tether pulling impractical. We overcome this challenge using goldfish bipolar cells which possess giant terminals, in a setup that combines optical tweezers with electrophysiology (to control stimulation and/or measure capacitance changes) and with high-resolution fluorescence microscopy (to label and identify sub- cellular structures and calcium imaging). We aim 1) to characterize the tether force response to electrical and mechanical perturbations that occur at a presynaptic terminal during activity. After stimulation, membrane added at an exocytic site needs to flow (and the associated tension perturbation propagate) over the terminal surface, then through the tether to produce a change in the measured tether force. We will characterize membrane flows in double-tether experiments and calibrate the tether response to step- changes in tether length. We will confirm that 𝜎 changes we observed in preliminary experiments (a drop ~1 s after stimulation, followed by recovery in ~10 s) are due to exo-endocytosis, and characterize rapid voltage- induced tether force changes. These will enable a quantitative understanding of measured 𝜎 changes associated with stimulation. Next, we will 2) characterize how membrane tension is regulated at a presynaptic nerve terminal. Combining pharmacological interventions with live imaging and 𝜎 measurements, we will test the hypothesis that F-actin is a major regulator of 𝜎 at the nerve terminal. We will manipulate 𝜎 and calcium independently to dissect calcium and 𝜎 requirements for SV turnover. These measurements will help generate a model of feedback between membrane trafficking and 𝜎 at the nerve terminal.
项目概要 神经系统中的信息主要在突触处传递,神经递质在突触处大量释放 通过膜结合的融合从突触前末端到突触后细胞的时间精度 突触小泡 (SV) 与细胞膜的相互作用,这一过程称为胞吐作用。这些 SV 的组件是 随后通过内吞作用回收并回收再利用。这笔赠款旨在了解相互作用 SV 回收和膜张力梯度以及相关膜流之间的关系。 在神经元和神经内分泌细胞中,胞吐作用和内吞作用均受到渗透膨胀或渗透膨胀的影响。 收缩,表明它们受到膜张力𝜎的影响。相反,膜添加到 突触前末梢通过胞吐作用预计会降低 𝜎,而内吞作用则应恢复它。此外, 膜张力被认为是将胞吐作用与内吞作用耦合的可能信号之一。 然而,尽管有这些关键作用,但还没有测量突触末梢和突触末端的膜张力。 张力变化与胞吐作用之间的关系尚不清楚,主要是由于技术困难。最好的 探测𝜎的方法是使用光镊从细胞表面拉出薄膜系绳,操纵 直径为 1-3 μm 的珠子作为手柄。珠子从陷阱中心的位移提供了系绳力, 这反映了𝜎。然而,大多数终端都很小,并且与突触后结构紧密耦合,使得 系绳拉动不切实际。我们利用金鱼双极细胞克服了这一挑战,该细胞拥有巨大的 终端,在将光镊与电生理学相结合的设置中(以控制刺激和/或 测量电容变化)并使用高分辨率荧光显微镜(标记和识别亚 细胞结构和钙成像)。我们的目标 1) 表征系绳力响应 活动期间突触前末梢发生的电和机械扰动。 刺激后,在胞吐位点添加的膜需要流动(以及相关的张力扰动 传播)在终端表面上,然后通过系绳产生测量的系绳力的变化。 我们将在双系绳实验中表征膜流,并将系绳响应校准为阶跃- 系绳长度的变化。我们将确认我们在初步实验中观察到的 𝜎 变化(下降约 1 秒) 刺激后,随后在〜10秒内恢复)是由于外吞作用,并表征快速电压- 引起系绳力的变化。这些将使人们能够定量地了解相关的测量𝜎变化 有刺激。接下来,我们将 2)描述突触前膜张力的调节方式 神经末梢。将药物干预与实时成像和𝜎测量相结合,我们将 检验 F-肌动蛋白是神经末梢 𝜎 的主要调节因子的假设。我们将操纵 𝜎 和 钙独立剖析钙和 SV 周转的需求。这些测量将有助于 生成神经末梢膜运输和 𝜎 之间的反馈模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ERDEM KARATEKIN其他文献

ERDEM KARATEKIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ERDEM KARATEKIN', 18)}}的其他基金

Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10405097
  • 财政年份:
    2021
  • 资助金额:
    $ 46.06万
  • 项目类别:
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10196486
  • 财政年份:
    2021
  • 资助金额:
    $ 46.06万
  • 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
  • 批准号:
    10364698
  • 财政年份:
    2021
  • 资助金额:
    $ 46.06万
  • 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
  • 批准号:
    10594954
  • 财政年份:
    2021
  • 资助金额:
    $ 46.06万
  • 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
  • 批准号:
    10424526
  • 财政年份:
    2020
  • 资助金额:
    $ 46.06万
  • 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
  • 批准号:
    10197098
  • 财政年份:
    2020
  • 资助金额:
    $ 46.06万
  • 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
  • 批准号:
    10636938
  • 财政年份:
    2020
  • 资助金额:
    $ 46.06万
  • 项目类别:
Membrane fission during sporulation
孢子形成过程中的膜裂变
  • 批准号:
    9036410
  • 财政年份:
    2015
  • 资助金额:
    $ 46.06万
  • 项目类别:
Nucleation and dynamics of exocytotic fusion pores
胞吐融合孔的成核和动力学
  • 批准号:
    8615066
  • 财政年份:
    2014
  • 资助金额:
    $ 46.06万
  • 项目类别:
Nucleation and dynamics of exocytotic fusion pores
胞吐融合孔的成核和动力学
  • 批准号:
    10376228
  • 财政年份:
    2014
  • 资助金额:
    $ 46.06万
  • 项目类别:

相似海外基金

Establishment of reconstituting method for G protein-coupled receptor into artificial membranes
G蛋白偶联受体人工膜重构方法的建立
  • 批准号:
    22H02585
  • 财政年份:
    2022
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Intracellular delivery and gene expression analysis of modified chromatin fibers encapsulated in artificial membranes
人工膜中修饰的染色质纤维的细胞内递送和基因表达分析
  • 批准号:
    20K21406
  • 财政年份:
    2020
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
GOALI: Collaborative Research: Interactions of Polishing and Incidental Nanoparticles in Chemical Mechanical Planarization Processes with Artificial Membranes and Human Cell Lines
GOALI:合作研究:化学机械平坦化过程中抛光和附带纳米颗粒与人造膜和人类细胞系的相互作用
  • 批准号:
    1604647
  • 财政年份:
    2016
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Interactions of Polishing and Incidental Nanoparticles in Chemical Mechanical Planarization Processes with Artificial Membranes and Human Cell Lines
GOALI:合作研究:化学机械平坦化过程中抛光和附带纳米颗粒与人造膜和人类细胞系的相互作用
  • 批准号:
    1605815
  • 财政年份:
    2016
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Standard Grant
Analysis of Rab membrane insertion mechanism using artificial membranes
利用人工膜分析 Rab 膜插入机制
  • 批准号:
    25650018
  • 财政年份:
    2013
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Artificial membranes as model systems to investigate the temperature adaptation of diatoms
人造膜作为模型系统研究硅藻的温度适应
  • 批准号:
    212032704
  • 财政年份:
    2012
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Research Grants
Interfacing Live Cells with Artificial Membranes: Synchronization in a Coupled Nonlinear System
将活细胞与人造膜连接:耦合非线性系统中的同步
  • 批准号:
    1131842
  • 财政年份:
    2012
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Standard Grant
Study of the proton sealing ability of artificial membranes
人工膜质子封闭能力的研究
  • 批准号:
    398271-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 46.06万
  • 项目类别:
    University Undergraduate Student Research Awards
Artificial membranes as model systems for the investigation of lipid protein interactions in the thylakoid membranes of vascular plants and the green alga Mantoniella squamata
人造膜作为研究维管植物类囊体膜和绿藻鳞状曼托尼菌中脂质蛋白相互作用的模型系统
  • 批准号:
    56808645
  • 财政年份:
    2007
  • 资助金额:
    $ 46.06万
  • 项目类别:
    Research Grants
RECONSTITUTION OF SNARE-MEDIATED FUSION WITH NATIVE AND ARTIFICIAL MEMBRANES
圈套介导的天然膜和人工膜融合的重建
  • 批准号:
    7036463
  • 财政年份:
    2004
  • 资助金额:
    $ 46.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了