Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)

复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析

基本信息

  • 批准号:
    10405508
  • 负责人:
  • 金额:
    $ 142.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Recurrent pregnancy loss (RPL) affects up to 5% of couples, yet nearly half of cases remain unexplained by current testing recommendations. Euploid pregnancy loss, in the setting of unexplained RPL, is particularly frustrating for patients and providers because there is no clear explanation or any proven therapies to mitigate risk of subsequent miscarriages. As clinical presentation and subsequent pregnancy outcomes vary widely, this complex disorder will ultimately require a precision health approach. While more than 3000 human genes are conserved and likely essential for early development, remarkably little is known about their contribution to RPL and current genetic databases are essentially devoid of RPL entries. Moreover, there is currently no database that annotates phenotypes and genotypes of these essential genes. This proposal aims to define genetic determinants of RPL through clinical and molecular phenotyping and genomic sequencing of a large RPL cohort, combined with novel bioinformatics and machine learning approaches to derive predictive risk algorithms. A comprehensive approach to identify genomic markers of pregnancy loss by whole genome sequencing of well- characterized RPL trios (mother-father-pregnancy loss) will be undertaken in Aim 1. These genetics efforts will be paired in Aim 2 with metabolomic, lipidomic and single cell transcriptomic profiling preconception and in early pregnancy. Leveraged with innovative machine learning strategies in Aim 3, this approach will significantly advance understanding of the genetic underpinnings of unexplained RPL. A clinical ‘intolerome’ database will be constructed in Aim 4 to facilitate worldwide collaboration and curation of genotypes and associated phenotypes, making the genetics and omics data and results available to the public as well as other funded teams. This multidisciplinary team includes leaders in RPL, genetics, genomics, prenatal diagnosis, bioinformatics and machine learning at Stanford, UCSF and OHSU. Combined we have a substantial cohort of RPL patients that will serve as a robust recruitment source, along with a collaboration with the unique UK Pregnancy Baby BioBank of existing trios to accomplish project goals. The proposed study is anticipated to have significant clinical and research impact by identifying the genomic contribution to RPL in a large and well phenotyped cohort and building improved risk predictions based on machine learning incorporating clinical, genetic, and molecular data. This work will lay the foundation for precision medicine-based interventions for RPL couples who are difficult to diagnose and have few proven treatments.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruth B Lathi其他文献

Ruth B Lathi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruth B Lathi', 18)}}的其他基金

Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)
复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析
  • 批准号:
    10225966
  • 财政年份:
    2021
  • 资助金额:
    $ 142.65万
  • 项目类别:
Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)
复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析
  • 批准号:
    10772396
  • 财政年份:
    2021
  • 资助金额:
    $ 142.65万
  • 项目类别:
Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)
复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析
  • 批准号:
    10612433
  • 财政年份:
    2021
  • 资助金额:
    $ 142.65万
  • 项目类别:
3/3- A randomized controlled trial of frozen embryo transfers performed in modified natural versus programmed cycles (NatPro)
3/3- 冷冻胚胎移植的随机对照试验,以改良的自然周期与程序周期进行(NatPro)
  • 批准号:
    10025597
  • 财政年份:
    2019
  • 资助金额:
    $ 142.65万
  • 项目类别:
3/3- A randomized controlled trial of frozen embryo transfers performed in modified natural versus programmed cycles (NatPro)
3/3- 冷冻胚胎移植的随机对照试验,以改良的自然周期与程序周期进行(NatPro)
  • 批准号:
    10682513
  • 财政年份:
    2019
  • 资助金额:
    $ 142.65万
  • 项目类别:
3/3- A randomized controlled trial of frozen embryo transfers performed in modified natural versus programmed cycles (NatPro)
3/3- 冷冻胚胎移植的随机对照试验,以改良的自然周期与程序周期进行(NatPro)
  • 批准号:
    10247787
  • 财政年份:
    2019
  • 资助金额:
    $ 142.65万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 142.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了