Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)

复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析

基本信息

  • 批准号:
    10612433
  • 负责人:
  • 金额:
    $ 125.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Recurrent pregnancy loss (RPL) affects up to 5% of couples, yet nearly half of cases remain unexplained by current testing recommendations. Euploid pregnancy loss, in the setting of unexplained RPL, is particularly frustrating for patients and providers because there is no clear explanation or any proven therapies to mitigate risk of subsequent miscarriages. As clinical presentation and subsequent pregnancy outcomes vary widely, this complex disorder will ultimately require a precision health approach. While more than 3000 human genes are conserved and likely essential for early development, remarkably little is known about their contribution to RPL and current genetic databases are essentially devoid of RPL entries. Moreover, there is currently no database that annotates phenotypes and genotypes of these essential genes. This proposal aims to define genetic determinants of RPL through clinical and molecular phenotyping and genomic sequencing of a large RPL cohort, combined with novel bioinformatics and machine learning approaches to derive predictive risk algorithms. A comprehensive approach to identify genomic markers of pregnancy loss by whole genome sequencing of well- characterized RPL trios (mother-father-pregnancy loss) will be undertaken in Aim 1. These genetics efforts will be paired in Aim 2 with metabolomic, lipidomic and single cell transcriptomic profiling preconception and in early pregnancy. Leveraged with innovative machine learning strategies in Aim 3, this approach will significantly advance understanding of the genetic underpinnings of unexplained RPL. A clinical ‘intolerome’ database will be constructed in Aim 4 to facilitate worldwide collaboration and curation of genotypes and associated phenotypes, making the genetics and omics data and results available to the public as well as other funded teams. This multidisciplinary team includes leaders in RPL, genetics, genomics, prenatal diagnosis, bioinformatics and machine learning at Stanford, UCSF and OHSU. Combined we have a substantial cohort of RPL patients that will serve as a robust recruitment source, along with a collaboration with the unique UK Pregnancy Baby BioBank of existing trios to accomplish project goals. The proposed study is anticipated to have significant clinical and research impact by identifying the genomic contribution to RPL in a large and well phenotyped cohort and building improved risk predictions based on machine learning incorporating clinical, genetic, and molecular data. This work will lay the foundation for precision medicine-based interventions for RPL couples who are difficult to diagnose and have few proven treatments.
项目总结 反复妊娠丢失(RPL)影响高达5%的夫妇,但近一半的病例仍无法解释 当前的测试建议。整倍体妊娠丢失,在原因不明的RPL的背景下,尤其是 令患者和提供者沮丧,因为没有明确的解释或任何有效的治疗方法来缓解 有随后流产的风险。由于临床表现和随后的妊娠结局差异很大,这 复杂的疾病最终将需要一种精确的健康方法。而超过3000个人类基因是 它们是保守的,可能对早期发育至关重要,人们对它们对RPL的贡献知之甚少 目前的基因数据库基本上没有RPL条目。此外,目前还没有数据库 它注释了这些重要基因的表型和基因类型。这项提案旨在定义基因 通过大量RPL队列的临床和分子表型和基因组测序确定RPL的决定因素, 结合新的生物信息学和机器学习方法,得出预测风险算法。一个 用全基因组测序方法鉴定妊娠丢失的基因组标记 特色化的RPL三人组(母亲-父亲-怀孕丢失)将在目标1中进行。这些遗传学努力将 在目标2中与代谢组、脂组和单细胞转录组分析配对前概念和早期 怀孕了。在Aim 3中利用创新的机器学习策略,这种方法将显著 促进对无法解释的RPL的遗传基础的理解。临床上的“不耐受组”数据库将 将在目标4中建立,以促进全球范围内的合作和对基因类型和相关 表型,向公众以及其他基金提供遗传学和组学数据和结果 团队。这个多学科团队包括RPL、遗传学、基因组学、产前诊断、 斯坦福大学、加州大学旧金山分校和俄亥俄州立大学的生物信息学和机器学习。加起来,我们有一个相当大的队列 RPL患者将作为一个强大的招募来源,以及与独特的英国 孕婴生物库现有三人组完成项目目标。拟议的研究预计将包括 通过在大量和良好的研究中确定基因组对RPL的贡献,对临床和研究产生重大影响 表型队列,并基于机器学习建立改进的风险预测,结合临床、 基因和分子数据。这项工作将为RPL的精准医学干预奠定基础 难以诊断且几乎没有得到证实的治疗方法的夫妇。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruth B Lathi其他文献

Ruth B Lathi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruth B Lathi', 18)}}的其他基金

Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)
复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析
  • 批准号:
    10225966
  • 财政年份:
    2021
  • 资助金额:
    $ 125.88万
  • 项目类别:
Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)
复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析
  • 批准号:
    10405508
  • 财政年份:
    2021
  • 资助金额:
    $ 125.88万
  • 项目类别:
Trio Analysis of Recurrent Pregnancy Loss Integrated Bioinformatics Genomics Study (TRIOS)
复发性流产综合生物信息学基因组学研究 (TRIOS) 的三重奏分析
  • 批准号:
    10772396
  • 财政年份:
    2021
  • 资助金额:
    $ 125.88万
  • 项目类别:
3/3- A randomized controlled trial of frozen embryo transfers performed in modified natural versus programmed cycles (NatPro)
3/3- 冷冻胚胎移植的随机对照试验,以改良的自然周期与程序周期进行(NatPro)
  • 批准号:
    10025597
  • 财政年份:
    2019
  • 资助金额:
    $ 125.88万
  • 项目类别:
3/3- A randomized controlled trial of frozen embryo transfers performed in modified natural versus programmed cycles (NatPro)
3/3- 冷冻胚胎移植的随机对照试验,以改良的自然周期与程序周期进行(NatPro)
  • 批准号:
    10682513
  • 财政年份:
    2019
  • 资助金额:
    $ 125.88万
  • 项目类别:
3/3- A randomized controlled trial of frozen embryo transfers performed in modified natural versus programmed cycles (NatPro)
3/3- 冷冻胚胎移植的随机对照试验,以改良的自然周期与程序周期进行(NatPro)
  • 批准号:
    10247787
  • 财政年份:
    2019
  • 资助金额:
    $ 125.88万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 125.88万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 125.88万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 125.88万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了