Diagnosis of indeterminate brain lesions using MRI-based machine learning and polygenic risk models
使用基于 MRI 的机器学习和多基因风险模型诊断不确定的脑部病变
基本信息
- 批准号:10406296
- 负责人:
- 金额:$ 62.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAdultBiological AssayBiopsyBrainBrain NeoplasmsBrain PathologyCentral Nervous System LymphomaCharacteristicsClinicalDataDemyelinating DiseasesDevelopmentDiagnosisDiagnosticDifferential DiagnosisDiffuseEffectivenessExcisionGenotypeGliomaIatrogenesisImageIndividualInflammatoryLeadLesionMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMeasuresMetastatic malignant neoplasm to brainMethodsModelingMorbidity - disease rateMultiple SclerosisMutateNeoplasm MetastasisNeuraxisOperative Surgical ProceduresOutcomePathologicPatient CarePatientsPredictive ValuePredispositionPrimary Brain NeoplasmsProspective cohortProspective cohort studyPublishingRadiationReproducibilityResearchRiskRunningSensitivity and SpecificitySiteSpecificityTrainingTumor DebulkingVariantWorkaccurate diagnosisbasebrain magnetic resonance imagingclinically significantcohortcostdiagnostic accuracyimprovedmachine learning modelmolecular subtypesmortalitypersonalized medicinepreventprospectiverisk varianttooltumor
项目摘要
PROJECT SUMMARY
In 2017 an MRI was performed at a rate of over one for every 10 US residents. The majority of these were
brain MRIs. Indeterminate mass lesions are present on over 1% of brain MRIs in individuals over 45 years old.
Misinterpretation of brain MRI can lead to significant iatrogenic morbidity and mortality. For example,
tumefactive Central Nervous System Inflammatory Demyelinating Disease (CNSIDD) is commonly
misdiagnosed as a malignancy, even following pathological review. This results in inappropriate brain biopsies,
debulking and radiation. While early tumor resection is associated with favorable outcome in patients with high-
grade glioma, observation, biopsy at an alternate site or nonsurgical options are often more appropriate for
other indeterminate mass lesions that can encompass low-grade primary brain tumor, CNSIDD, CNS
lymphoma and brain metastasis. Thus, to prevent iatrogenic morbidity, there is a critical need for scalable and
reproducible methods to distinguish CNSIDD from other brain lesions, and to accurately diagnose brain tumors
prior to biopsy. We recently published a polygenic risk model demonstrating that the 25 known glioma germline
risk variants can estimate absolute and lifetime glioma risk. The clinical significance of these models is driven
by germline variants that are associated with >4-fold increased risk of glioma. We have also shown that the
same 25 germline variants can predict glioma molecular subtype. As a complementary approach, we have
shown that imaging characteristics differ across glioma, CNSIDD, CNS lymphoma and brain metastases. We
have successfully utilized MRI-based machine learning to predict the molecular subtype in high-grade glioma.
We hypothesize that both germline genotyping and MRI-based machine learning provide an opportunity to
diagnose indeterminate mass lesions as well as predict glioma molecular subtype prior to surgery and thus
personalized treatment. The project has the following three aims: Aim 1: Develop and validate a MRI-based
machine learning model to differentiate adult diffuse glioma from tumefactive CNSIDD, CNS lymphoma and
solitary brain metastases of unknown primary. Aim 2: Evaluate sensitivity and specificity of the polygenic
glioma risk model to differentiate adult diffuse glioma from tumefactive CNSIDD, CNS lymphoma and solitary
brain metastases. Aim 3: Integrate the polygenic glioma subtype model and MRI-based machine learning
model to predict adult diffuse glioma molecular subtype and validate the integrated model using a prospective
cohort. The proposed project will further enhance the care of patients by determining if an early MRI lesion is
actually a glioma. Early definitive surgery in these patients could be curative.
项目摘要
2017年,每10名美国居民中就有一名以上的人接受MRI检查。其中大多数是
脑部核磁共振在45岁以上的人群中,超过1%的脑部MRI显示存在不确定的肿块病变。
脑MRI的错误解释可导致显著的医源性发病率和死亡率。比如说,
肿胀性中枢神经系统炎性脱髓鞘疾病(CNSIDD)通常是
被误诊为恶性肿瘤,甚至在病理检查之后。这会导致不适当的脑活检,
减积和放疗。虽然早期肿瘤切除与高血压患者的良好结局相关,
分级胶质瘤、观察、在替代部位活检或非手术选择通常更适合于
其他不确定的肿块病变,可能包括低级别原发性脑肿瘤、CNSIDD、CNS
淋巴瘤和脑转移。因此,为了防止医源性发病率,迫切需要可扩展且
可重复的方法,以区分CNSIDD与其他脑病变,并准确诊断脑肿瘤
在活检之前。我们最近发表了一个多基因风险模型,表明25个已知的胶质瘤生殖细胞系
风险变量可以估计胶质瘤的绝对和终生风险。这些模型的临床意义是驱动
与胶质瘤风险增加>4倍相关的生殖系变异。我们还表明,
相同的25个种系变异可以预测胶质瘤分子亚型。作为补充办法,我们
显示胶质瘤、CNSIDD、CNS淋巴瘤和脑转移瘤的成像特征不同。我们
已经成功地利用基于MRI的机器学习来预测高级别胶质瘤的分子亚型。
我们假设生殖细胞基因分型和基于MRI的机器学习都提供了一个机会,
诊断不确定的肿块病变以及在手术前预测胶质瘤分子亚型,
个性化治疗。该项目有以下三个目标:目标1:开发和验证基于MRI的
机器学习模型区分成人弥漫性胶质瘤与肿瘤性CNSIDD,CNS淋巴瘤和
原发灶不明的单发脑转移瘤。目的2:评价多基因扩增的敏感性和特异性
胶质瘤风险模型用于区分成人弥漫性胶质瘤与肿瘤性CNSIDD、CNS淋巴瘤和孤立性胶质瘤
脑转移目的3:整合多基因胶质瘤亚型模型和基于MRI的机器学习
模型预测成人弥漫性胶质瘤分子亚型,并使用前瞻性
队列。拟议的项目将通过确定早期MRI病变是否
其实是神经胶质瘤这些患者的早期确定性手术可能是治愈性的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEANETTE E ECKEL PASSOW其他文献
JEANETTE E ECKEL PASSOW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEANETTE E ECKEL PASSOW', 18)}}的其他基金
Diagnosis of indeterminate brain lesions using MRI-based machine learning and polygenic risk models
使用基于 MRI 的机器学习和多基因风险模型诊断不确定的脑部病变
- 批准号:
10224946 - 财政年份:2020
- 资助金额:
$ 62.31万 - 项目类别:
Diagnosis of indeterminate brain lesions using MRI-based machine learning and polygenic risk models
使用基于 MRI 的机器学习和多基因风险模型诊断不确定的脑部病变
- 批准号:
10654009 - 财政年份:2020
- 资助金额:
$ 62.31万 - 项目类别:
Evaluation of Patient-Matched Primary and Metastatic Samples to Identify and Vali
评估患者匹配的原发性和转移性样本以进行识别和验证
- 批准号:
8486586 - 财政年份:2013
- 资助金额:
$ 62.31万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 62.31万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 62.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 62.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 62.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)