Diagnosis of indeterminate brain lesions using MRI-based machine learning and polygenic risk models

使用基于 MRI 的机器学习和多基因风险模型诊断不确定的脑部病变

基本信息

  • 批准号:
    10654009
  • 负责人:
  • 金额:
    $ 62.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY In 2017 an MRI was performed at a rate of over one for every 10 US residents. The majority of these were brain MRIs. Indeterminate mass lesions are present on over 1% of brain MRIs in individuals over 45 years old. Misinterpretation of brain MRI can lead to significant iatrogenic morbidity and mortality. For example, tumefactive Central Nervous System Inflammatory Demyelinating Disease (CNSIDD) is commonly misdiagnosed as a malignancy, even following pathological review. This results in inappropriate brain biopsies, debulking and radiation. While early tumor resection is associated with favorable outcome in patients with high- grade glioma, observation, biopsy at an alternate site or nonsurgical options are often more appropriate for other indeterminate mass lesions that can encompass low-grade primary brain tumor, CNSIDD, CNS lymphoma and brain metastasis. Thus, to prevent iatrogenic morbidity, there is a critical need for scalable and reproducible methods to distinguish CNSIDD from other brain lesions, and to accurately diagnose brain tumors prior to biopsy. We recently published a polygenic risk model demonstrating that the 25 known glioma germline risk variants can estimate absolute and lifetime glioma risk. The clinical significance of these models is driven by germline variants that are associated with >4-fold increased risk of glioma. We have also shown that the same 25 germline variants can predict glioma molecular subtype. As a complementary approach, we have shown that imaging characteristics differ across glioma, CNSIDD, CNS lymphoma and brain metastases. We have successfully utilized MRI-based machine learning to predict the molecular subtype in high-grade glioma. We hypothesize that both germline genotyping and MRI-based machine learning provide an opportunity to diagnose indeterminate mass lesions as well as predict glioma molecular subtype prior to surgery and thus personalized treatment. The project has the following three aims: Aim 1: Develop and validate a MRI-based machine learning model to differentiate adult diffuse glioma from tumefactive CNSIDD, CNS lymphoma and solitary brain metastases of unknown primary. Aim 2: Evaluate sensitivity and specificity of the polygenic glioma risk model to differentiate adult diffuse glioma from tumefactive CNSIDD, CNS lymphoma and solitary brain metastases. Aim 3: Integrate the polygenic glioma subtype model and MRI-based machine learning model to predict adult diffuse glioma molecular subtype and validate the integrated model using a prospective cohort. The proposed project will further enhance the care of patients by determining if an early MRI lesion is actually a glioma. Early definitive surgery in these patients could be curative.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Population-based incidence and clinico-radiological characteristics of tumefactive demyelination in Olmsted County, Minnesota, United States.
美国明尼苏达州奥尔姆斯特德县Tumefactive脱髓鞘的基于人群的发病率和临床 - 辐射学特征。
  • DOI:
    10.1111/ene.15182
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Fereidan-Esfahani M;Decker PA;Eckel Passow JE;Lucchinetti CF;Flanagan EP;Tobin WO
  • 通讯作者:
    Tobin WO
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEANETTE E ECKEL PASSOW其他文献

JEANETTE E ECKEL PASSOW的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEANETTE E ECKEL PASSOW', 18)}}的其他基金

Diagnosis of indeterminate brain lesions using MRI-based machine learning and polygenic risk models
使用基于 MRI 的机器学习和多基因风险模型诊断不确定的脑部病变
  • 批准号:
    10406296
  • 财政年份:
    2020
  • 资助金额:
    $ 62.31万
  • 项目类别:
Diagnosis of indeterminate brain lesions using MRI-based machine learning and polygenic risk models
使用基于 MRI 的机器学习和多基因风险模型诊断不确定的脑部病变
  • 批准号:
    10224946
  • 财政年份:
    2020
  • 资助金额:
    $ 62.31万
  • 项目类别:
Evaluation of Patient-Matched Primary and Metastatic Samples to Identify and Vali
评估患者匹配的原发性和转移性样本以进行识别和验证
  • 批准号:
    8486586
  • 财政年份:
    2013
  • 资助金额:
    $ 62.31万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 62.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了