Genetic Control of Circuit Assembly in the Vertebrate Spinal Cord
脊椎动物脊髓中电路组装的遗传控制
基本信息
- 批准号:10406248
- 负责人:
- 金额:$ 95.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectArchitectureBehaviorBreathingCellsDevelopmentDiseaseEquilibriumFamilyFoundationsGeneticGoalsHOX proteinHomeobox GenesInjuryMammalsMethodsModernizationMolecularMotorMotor NeuronsMovementMuscleNeural tubeNeuronsOrganismPathway interactionsPeripheralPlayResearchRoleSensoryShapesSpecificitySpinalSpinal CordSpinal Degenerative DisorderSynapsesTherapeuticWalkingWorkcomparativedesigngene functiongenetic manipulationgenome-wideinsightmotor behaviormotor controlnerve supplyneural circuitneuromechanismpresynapticprogramsrepairedtranscription factor
项目摘要
Project Summary
The neural circuits controlling motor behaviors vital to mammals, including walking, breathing, and
balance, rely on the ability of neurons within the spinal cord to establish selective connections during
development. Work over the past decade has provided a fairly comprehensive understanding of the
genetic pathways that determine the identity of each major neuronal class within the neural tube. The
mechanisms through which neurons acquire subtype identities necessary for the incorporation into a
particular motor circuit are, however, still poorly defined. Our studies on the specification of spinal
motor neurons indicate that the large family of Hox transcription factors play key roles in generating
the hundreds of subtypes required for selective innervation of muscle. Hox proteins orchestrate
genetic programs that control diverse aspects of motor neuron maturation, including their topographic
organization, peripheral target muscle specificity, and presynaptic partners. Emerging studies from
our group also indicate that Hox genes function in multiple neuronal classes to shape synaptic
specificity during development, suggesting a broader role in circuit assembly. The overall goals of the
proposed research are to elucidate the mechanisms of neural diversification and connectivity within
the spinal cord, and to determine how Hox-dependent and -independent genetic programs establish
the circuit architectures necessary for motor control. Ultimately, we hope to uncover the pathways
through which genetically encoded developmental programs contribute to the emergence of specific
motor behaviors. Our approach integrates selective genetic manipulations of neuronal subtypes,
genome-wide interrogation of regulatory networks, modern circuit-tracing methods, comparative
analyses in multiple vertebrate organisms, and rigorous analyses of behavior. Elucidating the basic
mechanisms of motor circuit assembly will provide foundational insights relevant to the design of
therapeutic strategies to treat degenerative diseases of spinal neurons or repair motor circuits
damaged by injury.
项目摘要
控制对哺乳动物至关重要的运动行为的神经回路,包括行走,呼吸,
平衡,依赖于脊髓内神经元的能力,以建立选择性连接,
发展过去十年的工作提供了对
决定神经管内每个主要神经元类别身份的遗传途径。的
神经元获得亚型身份所需的机制,
然而,特定的电动机电路仍然不好定义。我们对脊椎动物规格的研究
运动神经元表明,Hox转录因子大家族在产生运动神经元中起关键作用。
肌肉的选择性神经支配需要数百种亚型。Hox蛋白协调
控制运动神经元成熟的各个方面的遗传程序,包括它们的地形
组织、外周靶肌肉特异性和突触前伙伴。新兴研究,
我们的研究小组还表明,Hox基因在多种神经元中起作用,
发展过程中的特异性,这表明在电路组装更广泛的作用。的总体目标
拟议的研究是阐明神经多样化和连接的机制,
脊髓,并确定如何Hox依赖性和非依赖性的遗传程序建立
电机控制所需的电路结构。最终,我们希望能够揭示
通过这些基因编码的发育程序,
运动行为我们的方法整合了神经元亚型的选择性遗传操作,
调控网络的全基因组询问,现代电路追踪方法,比较
在多种脊椎动物有机体中的分析,以及对行为的严格分析。阐明基本的
电机电路组装的机制将提供与设计相关的基本见解,
治疗脊髓神经元退行性疾病或修复运动回路的治疗策略
因受伤而受损。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEREMY S DASEN其他文献
JEREMY S DASEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEREMY S DASEN', 18)}}的其他基金
Genetic Control of Circuit Assembly in the Vertebrate Spinal Cord
脊椎动物脊髓中电路组装的遗传控制
- 批准号:
10615900 - 财政年份:2020
- 资助金额:
$ 95.89万 - 项目类别:
Advanced Graduate Neuroscience Training Grant - Travel Supplement
高级研究生神经科学培训补助金 - 旅行补充品
- 批准号:
9898049 - 财政年份:2019
- 资助金额:
$ 95.89万 - 项目类别:
Genetic Control of Topographic Map Formation in the Development of Spinal Circuits
脊髓回路发育过程中地形图形成的遗传控制
- 批准号:
9156789 - 财政年份:2016
- 资助金额:
$ 95.89万 - 项目类别:
Analysis of spinal locomotor circuit development in the little skate Leucoraja erinacea
小鳐鱼脊髓运动回路发育分析
- 批准号:
9224360 - 财政年份:2016
- 资助金额:
$ 95.89万 - 项目类别:
Integrative Approaches to Explore Cellular Interactions in Neural Circuits
探索神经回路中细胞相互作用的综合方法
- 批准号:
10202741 - 财政年份:2014
- 资助金额:
$ 95.89万 - 项目类别:
Training Program in Molecular, Cellular, and Translational Neuroscience
分子、细胞和转化神经科学培训项目
- 批准号:
9104208 - 财政年份:2014
- 资助金额:
$ 95.89万 - 项目类别:
Integrative Approaches to Explore Cellular Interactions in Neural Circuits
探索神经回路中细胞相互作用的综合方法
- 批准号:
10413804 - 财政年份:2014
- 资助金额:
$ 95.89万 - 项目类别:
Integrative Approaches to Explore Cellular Interactions in Neural Circuits
探索神经回路中细胞相互作用的综合方法
- 批准号:
10621202 - 财政年份:2014
- 资助金额:
$ 95.89万 - 项目类别:
Transcriptional Control of Motor Neuron Identity and Connectivity. - Renewal - 1
运动神经元身份和连接的转录控制。
- 批准号:
9116952 - 财政年份:2009
- 资助金额:
$ 95.89万 - 项目类别:
Transcriptional Control of Motor Neuron Identity and Connectivity
运动神经元身份和连接的转录控制
- 批准号:
7654831 - 财政年份:2009
- 资助金额:
$ 95.89万 - 项目类别:
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
- 批准号:
2316666 - 财政年份:2023
- 资助金额:
$ 95.89万 - 项目类别:
Fellowship Award
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 95.89万 - 项目类别:
Standard Grant
Architecture, dynamics and cell-specific behavior of tau condensates
tau 凝聚物的结构、动力学和细胞特异性行为
- 批准号:
10662730 - 财政年份:2023
- 资助金额:
$ 95.89万 - 项目类别:
NSF-BSF: Natural selection on the social interactions that mediate collective behavior: ecological pressures and genomic architecture
NSF-BSF:介导集体行为的社会互动的自然选择:生态压力和基因组结构
- 批准号:
1940647 - 财政年份:2020
- 资助金额:
$ 95.89万 - 项目类别:
Continuing Grant
Description method and formal verification method with section behavior model based on software architecture
基于软件体系结构的分段行为模型描述方法和形式化验证方法
- 批准号:
19K11911 - 财政年份:2019
- 资助金额:
$ 95.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Genetic Architecture and Proximate Mechanisms Underlying Indirect Genetic Effects on Cooperative Antipredator Behavior
职业:间接遗传效应对合作性反捕食者行为的遗传结构和直接机制
- 批准号:
1453536 - 财政年份:2015
- 资助金额:
$ 95.89万 - 项目类别:
Continuing Grant
Investigation of the influence of architecture and doping of diamond like carbon coatings on the damage behavior under cyclic mechanical stress
研究类金刚石碳涂层的结构和掺杂对循环机械应力下损伤行为的影响
- 批准号:
279491470 - 财政年份:2015
- 资助金额:
$ 95.89万 - 项目类别:
Research Grants