Data Management and Statistical Analysis Core (Core C)
数据管理和统计分析核心(核心C)
基本信息
- 批准号:10405116
- 负责人:
- 金额:$ 42.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingAlgorithmsAlzheimer&aposs DiseaseAreaBiologicalBiological AssayBiological MarkersBiometryBrainCohort AnalysisCohort StudiesCollaborationsComplexDataData AnalysesData AnalyticsData ScienceData SecurityData Storage and RetrievalDatabasesDeliriumDementiaDevelopmentEnrollmentEnsureEnvironmentExperimental DesignsFacultyFundingGoalsHuman ResourcesImageImage AnalysisIncidenceInformation ManagementInformation ResourcesInfrastructureInterviewLeadershipMachine LearningMaintenanceManuscriptsMatched Case-Control StudyMedical RecordsMetadataMethodologyMethodsModelingModernizationMultivariate AnalysisObservational StudyOperations ResearchOperative Surgical ProceduresOutcomeParticipantPhysical FunctionPlayPrevention strategyProceduresProductionProductivityProtocols documentationPublicationsQuality ControlReportingReproducibilityResearchResearch DesignResearch PersonnelResourcesRiskRoleSafetySample SizeSamplingScheduleScienceScientistSeasonsSecureSourceSpecimenStandardizationStatistical Data InterpretationStructureSupervisionSystemTestingTimeVisitWorkcase controlclinically significantcognitive developmentcognitive functioncognitive reservecohortcomputing resourcescost effectivedata cleaningdata infrastructuredata managementdata qualitydesignexperienceinnovationmethod developmentmultiple chronic conditionsnoveloperationparticipant enrollmentpeer supportpreservationprogramssafety studysuccesstherapy developmenttoolweb-enabled
项目摘要
ABSTRACT
The study of delirium, and its relationship to dementia and Alzheimer's Disease, presents distinct quantitative
challenges, including elevated risk of participant attrition and confounding of associations via the influences of
surgery and multimorbidity. The Data Management and Statistical Analysis (DMSA) Core (Core C) has been
developed to address these challenges. The overall goal of the DMSA Core is to provide data management
and biostatistical resources and expertise promoting best statistical and scientific practices within this Program
Project. DMSA activities are directed toward the three mutually reinforcing Specific Aims: (1) to develop
infrastructure for data capture and metadata management; (2) to develop and maintain secure data
management infrastructure; and (3) to provide comprehensive statistical and data management support,
including novel methods development, to each of the five projects. The DMSA's leadership has substantial
expertise in observational studies, experimental design, longitudinal multivariate analysis, biomarker analysis,
scale development, machine learning, and missing data, and is seasoned in the leadership of data science
teams. Its skilled staff are substantially experienced in the acquisition and management of high quality data, as
illustrated by the extremely successful data capture and completeness initiatives developed in the initial
funding cycle. Core faculty maintain active and highly productive collaborative relationships with the SAGES
investigators. Additionally, the DMSA provides key venues for collaboration, supervision and peer support of its
faculty and personnel; maintenance of efficiency and productivity; and surety of quality control around data and
analytic issues. The DMSA has embedded continuous innovation in its operations; examples of this innovation
include novel scale development for cognitive and physical function; extended matching algorithms in
case/control design, and the development of novel and integrated web-enabled data management and
analysis tools, which enhance the reproducibility of scientific findings. The DMSA will provide the venue for
efficient and cost effective information management and data analysis of the five projects proposed here; the
feasibility of this ambitious effort is demonstrated by our success in the initial funding cycle and our well-
developed research operations model. This Program Project has tremendous potential to advance the science
of delirium, leading ultimately to the development of interventions targeting its incidence and sequelae.
Ultimately, this Program Project holds tremendous potential to advance our understanding of delirium, and to
develop more effective strategies for prevention and treatment of delirium and associated conditions and
complications. The DMSA will play a critical role in its success.
摘要
谵妄的研究,以及它与痴呆和阿尔茨海默病的关系,提出了不同的定量分析。
挑战,包括参与者流失的风险增加和通过以下因素的影响混淆关联
手术和多发性硬化症数据管理和统计分析(DMSA)核心(核心C)已经
为应对这些挑战而开发。DMSA核心的总体目标是提供数据管理
生物统计资源和专业知识,促进本计划内的最佳统计和科学实践
项目DMSA的活动旨在实现三个相辅相成的具体目标:(1)发展
数据采集和元数据管理的基础设施;(2)开发和维护安全数据
管理基础设施;以及(3)提供全面的统计和数据管理支持,
包括开发新方法。DMSA的领导层
在观察性研究、实验设计、纵向多变量分析、生物标志物分析、
规模开发,机器学习和缺失数据,并在数据科学的领导方面经验丰富
团队其熟练的工作人员在获取和管理高质量数据方面经验丰富,
在最初的数据收集和完整性倡议中,
融资周期。核心教师与SAGES保持积极和高效的合作关系
investigators.此外,DMSA还提供了合作、监督和同行支持的关键场所,
教师和人员;保持效率和生产力;以及围绕数据和
分析问题。DMSA在其业务中不断创新;这种创新的例子
包括认知和身体功能新量表开发;
病例/对照设计,以及开发新颖的集成网络数据管理和
分析工具,提高科学发现的可重复性。DMSA将提供场地,
对这里提出的五个项目进行有效和具有成本效益的信息管理和数据分析;
这一雄心勃勃的努力的可行性体现在我们在最初的筹资周期中取得的成功以及我们的良好-
开发研究业务模型。该计划项目具有推动科学发展的巨大潜力
谵妄,最终导致针对其发病率和后遗症的干预措施的发展。
最终,这个计划项目拥有巨大的潜力,以促进我们对谵妄的理解,
制定更有效的预防和治疗谵妄及相关疾病的策略,
并发症DMSA将在其成功中发挥关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Glenn Travison其他文献
Thomas Glenn Travison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Glenn Travison', 18)}}的其他基金
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




