Stalled capillary flow: a novel mechanism for hypoperfusion in Alzheimer disease

毛细血管血流停滞:阿尔茨海默病低灌注的新机制

基本信息

  • 批准号:
    10412670
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract We seek to investigate the agent-based participation of machine learning (ML) models in an existing crowdsourcing system, which could substantially speed up biomedical image analysis without loss of data quality for Aims 2-4 in our R01 research. We encountered an analytic bottleneck in our prior R01-supported work, which seeks to reveal mechanisms that underlie capillary stalling in the brain and requires quantifying stall rates from 2PEF (2-photon excited fluorescence) image stacks. To address this, we partnered with the Human Computation Institute (HCI) to crowdsource the analysis using the online citizen science platform Stall Catchers, which has reduced the time to analyze a typical dataset from many months to just a few weeks. Beyond enabling several published results, 35,000 Stall Catchers volunteers have produced over 1.4 million high-quality “crowd” annotations, which served as a rich training set in a recent machine learning competition that led to the creation of fifty distinct ML models exhibiting a broad distribution of sensitivity and bias. None of these models, by itself, meets our stringent analytic requirements. However, if we could endow these models with sufficient agency to participate as bonafide Stall Catchers players, then we could test the hypothesis that hybrid (human/machine) ensembles will achieve the same data quality as human-only ensembles when answers are combined using our existing “wisdom of the crowd” algorithm. Developing an open source toolkit for transforming ML models into citizen science “bots” would enable a direct pathway for effectively integrating even substandard ML models into an existing crowd-powered analytic pipeline without requiring intensive re-engineering. Accelerating biomedical data analysis in this way could allow other biomedical researchers to derive immediate value from smaller training sets and investigate more hypotheses using less time and resources. This project could enable a low-overhead pathway for semi-automation using imperfect ML models, which could leverage ML sooner while reducing reliance on human cognitive resources, and provide a pathway for achieving fully automated analyses as improved ML models are added to the crowd as CitSci bots. Success in this pursuit would allow us to incorporate full-time CitSci bots into Stall Catchers, which could double the number of capillary stalling studies we can conduct in a given year toward elucidating a more complete mechanistic model of capillary stalling. This would speed up our ability to identify a targeted intervention with reduced side effects that could alleviate cognitive impairments in implicated dementias, such as Alzheimer’s disease while contributing to the advancement of hybrid intelligence methods with broad utility for biomedical data analysis.
项目摘要/摘要 我们试图研究基于代理的机器学习(ML)模型在现有的 众包系统,可以在不损失数据质量的情况下大幅加快生物医学图像分析速度 对于我们R01研究中的目标2-4。我们在之前的R01支持的工作中遇到了分析瓶颈, 旨在揭示大脑中毛细血管停滞的基础机制,并需要量化停滞率 2PEF(双光子激发荧光)图像堆栈。为了解决这个问题,我们与人类计算合作 该研究所(HCI)使用在线公民科学平台Stall Catcher众包这项分析,该平台 将分析典型数据集的时间从几个月减少到几周。除了支持以下几个 公布结果,3.5万名赶摊志愿者造就了140多万名高质量的“群众” 注释,在最近的一次机器学习竞赛中充当了丰富的训练集,导致了 在50个不同的ML模型中,显示出广泛的敏感度和偏差分布。这些车型本身都不是, 满足我们严格的分析要求。然而,如果我们能够赋予这些模型足够的代理来 作为真正的捕手球员参与进来,那么我们就可以检验混血(人/机器)的假设。 当使用我们的 现有的“群众智慧”算法。开发一个开源工具包,将ML模型转换为 公民科学“机器人”将提供一条直接途径,将不符合标准的ML模型有效地集成到 现有的大众支持的分析管道,而不需要密集的重新设计。加速生物医学 以这种方式进行数据分析可以让其他生物医学研究人员从较小的培训中立即获得价值 用更少的时间和资源设置和研究更多的假设。该项目可以实现低管理费用 使用不完美的ML模型实现半自动化的途径,这可能会更快地利用ML,同时减少 对人类认知资源的依赖,并提供了一条实现全自动分析的途径,如 改进的ML模型作为CitSci机器人加入了人群。这一追求的成功将使我们能够将 全职CitSci机器人进入失速捕手,这可能会使我们可以进行的毛细血管失速研究的数量翻一番 在某一年,为阐明更完整的毛细管失速机理模型所做的努力。这将会 加快我们确定有针对性的干预的能力,减少副作用,缓解认知障碍 被牵连的痴呆症的损害,如阿尔茨海默病,同时有助于促进 混合智能方法在生物医学数据分析中具有广泛的实用价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nozomi Nishimura其他文献

Nozomi Nishimura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nozomi Nishimura', 18)}}的其他基金

Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
  • 批准号:
    10732612
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
Toward fast and deep imaging of living tissue with cellular resolution
以细胞分辨率对活体组织进行快速、深度成像
  • 批准号:
    10651713
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
  • 批准号:
    10463819
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
  • 批准号:
    10294095
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
Age Compromises Novel Motility and Repair Functions in Stem Cell Niche of Intestinal Crypts
年龄会损害肠隐窝干细胞生态位的新活力和修复功能
  • 批准号:
    9753843
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
  • 批准号:
    9395599
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
In vivo tools for analyzing interstitial fluid flow
用于分析间质液流动的体内工具
  • 批准号:
    9751865
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
Supplement: Stalled capillary flow affects protein clearance by modulating interstitial fluid flow
补充:毛细血管血流停滞通过调节间质液流动影响蛋白质清除
  • 批准号:
    10617575
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
  • 批准号:
    8140740
  • 财政年份:
    2010
  • 资助金额:
    $ 22万
  • 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
  • 批准号:
    8044027
  • 财政年份:
    2010
  • 资助金额:
    $ 22万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了