Stalled capillary flow: a novel mechanism for hypoperfusion in Alzheimer disease

毛细血管血流停滞:阿尔茨海默病低灌注的新机制

基本信息

  • 批准号:
    10412670
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract We seek to investigate the agent-based participation of machine learning (ML) models in an existing crowdsourcing system, which could substantially speed up biomedical image analysis without loss of data quality for Aims 2-4 in our R01 research. We encountered an analytic bottleneck in our prior R01-supported work, which seeks to reveal mechanisms that underlie capillary stalling in the brain and requires quantifying stall rates from 2PEF (2-photon excited fluorescence) image stacks. To address this, we partnered with the Human Computation Institute (HCI) to crowdsource the analysis using the online citizen science platform Stall Catchers, which has reduced the time to analyze a typical dataset from many months to just a few weeks. Beyond enabling several published results, 35,000 Stall Catchers volunteers have produced over 1.4 million high-quality “crowd” annotations, which served as a rich training set in a recent machine learning competition that led to the creation of fifty distinct ML models exhibiting a broad distribution of sensitivity and bias. None of these models, by itself, meets our stringent analytic requirements. However, if we could endow these models with sufficient agency to participate as bonafide Stall Catchers players, then we could test the hypothesis that hybrid (human/machine) ensembles will achieve the same data quality as human-only ensembles when answers are combined using our existing “wisdom of the crowd” algorithm. Developing an open source toolkit for transforming ML models into citizen science “bots” would enable a direct pathway for effectively integrating even substandard ML models into an existing crowd-powered analytic pipeline without requiring intensive re-engineering. Accelerating biomedical data analysis in this way could allow other biomedical researchers to derive immediate value from smaller training sets and investigate more hypotheses using less time and resources. This project could enable a low-overhead pathway for semi-automation using imperfect ML models, which could leverage ML sooner while reducing reliance on human cognitive resources, and provide a pathway for achieving fully automated analyses as improved ML models are added to the crowd as CitSci bots. Success in this pursuit would allow us to incorporate full-time CitSci bots into Stall Catchers, which could double the number of capillary stalling studies we can conduct in a given year toward elucidating a more complete mechanistic model of capillary stalling. This would speed up our ability to identify a targeted intervention with reduced side effects that could alleviate cognitive impairments in implicated dementias, such as Alzheimer’s disease while contributing to the advancement of hybrid intelligence methods with broad utility for biomedical data analysis.
项目总结/摘要 我们试图研究机器学习(ML)模型在现有的代理参与 众包系统,可以大大加快生物医学图像分析,而不会损失数据质量 在我们的R 01研究中,目标2-4。我们在之前R 01支持的工作中遇到了分析瓶颈, 试图揭示大脑中毛细血管停滞的机制,并需要量化停滞率, 2 PEF(双光子激发荧光)图像堆栈。为了解决这个问题,我们与人类计算合作, 研究所(HCI)使用在线公民科学平台Stall Catchers进行众包分析,该平台 将分析典型数据集的时间从数月缩短到几周。除了使几个 公布的结果,35,000名Stall Catchers志愿者已经产生了超过140万高质量的“人群” 注释,在最近的一次机器学习竞赛中作为丰富的训练集, 50个不同的ML模型,表现出广泛的灵敏度和偏差分布。这些模型本身 符合我们严格的分析要求。然而,如果我们能赋予这些模型足够的动力, 作为真正的失速捕手球员参与,那么我们就可以测试混合(人类/机器) 当答案使用我们的 现有的“群众智慧”算法。开发一个开源工具包,用于将ML模型转换为 公民科学“机器人”将为有效地将甚至不合格的ML模型集成到 现有的群体动力分析管道,而无需密集的重新设计。加速生物医学 以这种方式进行的数据分析可以使其他生物医学研究人员从较小的培训中获得直接价值 用更少的时间和资源设置和调查更多的假设。该项目可以实现低开销 使用不完美的ML模型的半自动化途径,可以更快地利用ML,同时减少 依赖人类认知资源,并提供实现全自动分析的途径, 改进的ML模型作为CitSci机器人加入到人群中。在这一追求中的成功将使我们能够将 全职CitSci机器人进入Stall Catchers,这可能会使我们可以进行的毛细血管停滞研究数量增加一倍。 在给定的一年内进行,以阐明一个更完整的毛细血管失速的机理模型。这将 加快我们确定有针对性的干预措施的能力,减少副作用,减轻认知障碍, 在牵连痴呆症,如阿尔茨海默氏病的损害,同时有助于发展, 混合智能方法,具有广泛的实用性,用于生物医学数据分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nozomi Nishimura其他文献

Nozomi Nishimura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nozomi Nishimura', 18)}}的其他基金

Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
  • 批准号:
    10732612
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
Toward fast and deep imaging of living tissue with cellular resolution
以细胞分辨率对活体组织进行快速、深度成像
  • 批准号:
    10651713
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
  • 批准号:
    10463819
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
  • 批准号:
    10294095
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
Age Compromises Novel Motility and Repair Functions in Stem Cell Niche of Intestinal Crypts
年龄会损害肠隐窝干细胞生态位的新活力和修复功能
  • 批准号:
    9753843
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
  • 批准号:
    9395599
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
In vivo tools for analyzing interstitial fluid flow
用于分析间质液流动的体内工具
  • 批准号:
    9751865
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
Supplement: Stalled capillary flow affects protein clearance by modulating interstitial fluid flow
补充:毛细血管血流停滞通过调节间质液流动影响蛋白质清除
  • 批准号:
    10617575
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
  • 批准号:
    8140740
  • 财政年份:
    2010
  • 资助金额:
    $ 22万
  • 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
  • 批准号:
    8044027
  • 财政年份:
    2010
  • 资助金额:
    $ 22万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了