Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
基本信息
- 批准号:10294095
- 负责人:
- 金额:$ 24.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAdoptedAequorinAffectAxonBehavioral ParadigmBioluminescenceCalciumCellsCodeCollectionColorComplexCoupledDataDendritesDependovirusElectrodesElectrophysiology (science)EquilibriumFluorescenceFunctional ImagingGeneticGeometryGoalsGrantHeadImageIndividualInfectionInterneuronsIon ChannelKnowledgeLabelLearningLightLoxP-flanked alleleMapsMeasurementMeasuresMethodologyMethodsMicroinjectionsMicroscopeMicroscopyModernizationNeuritesNeuronsNeurosciencesOpticsPatternPlasmidsPositioning AttributeProteinsRabiesRabies virusScanningSchemeSignal TransductionStructureSynapsesTechniquesTechnologyTetanus Helper PeptideTracerViralViral VectorVirusWorkadeno-associated viral vectoranterograde transportbasebrain volumecalcium indicatorcell typeexperimental studygenetic approachhigh resolution imagingimprovedinstrumentationlight emissionoptical fiberoptical imagingoptogeneticspostsynapticpresynapticpresynaptic neuronsrecombinaserelating to nervous systemretrograde transporttechnology developmenttoolvector
项目摘要
Summary
Measuring the activity of many individual neurons at once while knowing their wiring diagrams would provide
exciting information on how the components of a network interact. Knowledge of wiring diagrams has rapidly
improved due to advances in the field of connectomics, and capabilities for simultaneous measurement of many
individual neurons has increased exponentially with large-scale recording techniques. However, it is still difficult
to combine such measurements. Registering high-resolution imaging for tracing neural projections with
electrophysiological measurements, such as electrode arrays, is extremely difficult. With optical imaging, such
tracing is possible, but neural activity measurements are often limited to particular geometries, most commonly
a single plane in z. Although new imaging advances for volumetric imaging have eased this limitation somewhat,
complicated instrumentation puts such technologies out of reach for most labs. This proposal addresses this
challenge by using multicolor aequorin-fluorescent proteins (Aeq-FPs) as both fluorescent structural tracers and
functional indicators for recording calcium activity. Aeq-FPs are bioluminescent indicators of calcium
concentration that emit light from the entire cell including the dendritic and axonal arbors. In the proposed
scheme, each neuron will express a unique combination of Aeq-FP colors so that it is color-coded to have its
own spectral signature. The activity of individual neurons can be distinguished from the spectrum of the emitted
bioluminescence without resolving the spatial position of the origin of the light. This enables simultaneous
recording of the activity of many cells in arbitrary spatial arrangements including from different layers in the
cortex. Connected networks are identified by limiting expression of the Aeq-FPs to neurons that are one synapse
away from “starter” cells using transsynaptic viral vectors (modified rabies for retrograde transport and adeno-
associated viruses (AAVs) for anterograde transport). The unique color combinations expressed in each cell also
facilitate structural tracing. With these combined technologies, the network of microcircuits defined by
connectivity to a single “starter” cell will be traced in three dimensions and correlated to measurements of activity
in a single trial. In Aim 1, the starter cell is postsynaptic from the network, so this data will show how the
presynaptic network involving multiple different types of cells from across cortical layers affects starter cell
activity. In Aim 2, the starter cell is presynaptic to the labeled network and will express channelrhodopsin.
Optically stimulating the starter cell will show how the network activity is affected by the modulation of the single
cell. Such measurement capabilities will enable new types of experiments relating structure and activity and
could be readily adopted by many labs.
概括
同时测量许多单个神经元的活动,同时知道其接线图将提供
有关网络组件如何交互的令人兴奋的信息。接线图的知识迅速
由于连接组学领域的进步以及同时测量的能力,改善了许多
通过大规模记录技术,单个神经元指数增加。但是,仍然很困难
结合此类测量。注册高分辨率成像,以追踪神经项目
电生理测量(例如电极阵列)非常困难。使用光学成像,这样
追踪是可能的,但是神经活动测量通常仅限于特定的几何形状,最常见
Z中的一架平面。尽管体积成像的新成像进步具有容易的限制,但
对于大多数实验室来说,复杂的仪器使此类技术无法触及。该提议解决了这个问题
通过使用多色Aequorin荧光蛋白(AEQ-FPS)作为荧光结构示踪剂和
记录钙活性的功能指标。 AEQ-FPS是钙的生物发光指标
从整个细胞中发出光的浓度,包括树突状和轴突轴。在提议中
方案,每个神经元将表达AEQ-FP颜色的独特组合,以使其具有颜色编码以具有其颜色
自己的光谱签名。可以将单个神经元的活性与发射的光谱区分开
生物发光,而无需解决光的起源的空间位置。这可以同时进行
记录许多细胞在任意空间排列中的活性,包括来自不同层的不同层
皮质。通过将AEQ-FPS的表达限制为一个是突触的神经元,可以识别连接的网络
使用经突触病毒载体远离“起动器”细胞(改良的狂犬病逆行和腺
相关病毒(AAVS)用于顺行传输)。每个单元格也表达的独特颜色组合
促进结构追踪。通过这些组合技术,由微电路网络定义
与单个“启动器”单元的连接性将以三个维度追踪,并与活动的测量相关
在一次试验中。在AIM 1中,起动器细胞是网络后的突触,因此此数据将显示如何
涉及多种不同类型的细胞跨皮层层的突触前网络会影响开胃细胞
活动。在AIM 2中,起动器细胞是标记网络的突触前,并将表达通道旋转。
光刺激起动器单元将显示网络活动如何受单个调制的影响
细胞。这种测量功能将使与结构和活动有关的新型实验以及
许多实验室可以很容易地采用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nozomi Nishimura其他文献
Nozomi Nishimura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nozomi Nishimura', 18)}}的其他基金
Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
- 批准号:
10732612 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Toward fast and deep imaging of living tissue with cellular resolution
以细胞分辨率对活体组织进行快速、深度成像
- 批准号:
10651713 - 财政年份:2022
- 资助金额:
$ 24.6万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10463819 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Stalled capillary flow: a novel mechanism for hypoperfusion in Alzheimer disease
毛细血管血流停滞:阿尔茨海默病低灌注的新机制
- 批准号:
10412670 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Age Compromises Novel Motility and Repair Functions in Stem Cell Niche of Intestinal Crypts
年龄会损害肠隐窝干细胞生态位的新活力和修复功能
- 批准号:
9753843 - 财政年份:2018
- 资助金额:
$ 24.6万 - 项目类别:
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
- 批准号:
9395599 - 财政年份:2017
- 资助金额:
$ 24.6万 - 项目类别:
In vivo tools for analyzing interstitial fluid flow
用于分析间质液流动的体内工具
- 批准号:
9751865 - 财政年份:2017
- 资助金额:
$ 24.6万 - 项目类别:
Supplement: Stalled capillary flow affects protein clearance by modulating interstitial fluid flow
补充:毛细血管血流停滞通过调节间质液流动影响蛋白质清除
- 批准号:
10617575 - 财政年份:2015
- 资助金额:
$ 24.6万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8140740 - 财政年份:2010
- 资助金额:
$ 24.6万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8044027 - 财政年份:2010
- 资助金额:
$ 24.6万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别: