Closed-Loop Stimulus Optimization to Increase Communication Efficiency in Brain-Computer Interfaces
闭环刺激优化可提高脑机接口的通信效率
基本信息
- 批准号:10412578
- 负责人:
- 金额:$ 26.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptionAlgorithmsAmyotrophic Lateral SclerosisArtificial IntelligenceAugmentative and Alternative CommunicationAwardAwarenessBelief SystemBig DataBrainChronicCodeCommunicationCommunitiesComputer softwareConsumptionDataData EngineeringData FilesData ReportingData ScienceData SetDevelopmentDevicesDiseaseDocumentationElectroencephalographyElementsEnvironmentEyeFAIR principlesFundingGoalsHeadIndividualInformation TechnologyInjuryLearningLearning SkillLettersLongitudinal StudiesMachine LearningMeasurementMeasuresMetadataMethodsModalityModelingMotorMovementMuscleNoiseOutputParentsParticipantPerformancePopulationProcessPsychological TransferPsychophysicsPythonsReadabilityReadinessRefractoryResearchResearch SupportScheduleSelf-Help DevicesSensorySignal TransductionSkeletal MuscleSourceSpeedStimulusStudentsSystemTechniquesTechnologyTestingTimeTouch sensationTrainingTranslatingTranslationsUncertaintyUnited States National Institutes of HealthUser-Computer InterfaceValidationWorkalgorithm developmentbasebrain computer interfacebrain researchcohortcommunication devicedata cleaningdata curationdata managementdata repositorydata standardsdeep learningdesigndirected attentiondisabilityexperiencefile formatgazegraduate studentimprovedinnovationinterestlarge datasetslearning communitymachine learning algorithmmotor controlmultidisciplinaryneuroregulationneurotransmissionnovelopen sourceprogramsrelating to nervous systemrepositoryresponsesimulationskill acquisitionskillsspellingstudent participationsuccesstime useundergraduate studentusability
项目摘要
ABSTRACT
This administrative supplement is in response to the Notice of Special Interest to improve the artificial
intelligence and machine learning (AI/ML)-Readiness of NIH-supported sata (NOT-OD-21-094). Summary of
Parent Award. Augmentative and alternative communication (AAC) systems are used by people with
communication and motor disabilities, such as amyotrophic lateral sclerosis (ALS), to communicate and
interact with their environment. There are conventional AAC devices that are controlled by access methods
such as touch, switch, head tracking and eye gaze; however, these access methods become difficult or
impossible to use when sustained muscle control or voluntary motor control is lost. There are brain-computer
interface (BCI) communication systems, such as the P300 speller, that use sensory stimulation to elicit and
then detect sensory neural responses in electroencephalography (EEG) data. However, communication with
stimulus driven BCIs is suboptimal due to relying on inherently noisy EEG data and highly variable neural
responses for BCI control. BCI communication rates can potentially be improved by leveraging information in
EEG data in real-time to optimally tune the BCI system’s parameters to maximise BCI performance under
conditions of uncertainty. This work investigates a novel closed-loop stimulus selection algorithm that optimises
the stimulus presentation schedule of the P300 speller in real-time based on the measured EEG data and the
BCI system’s belief about the user’s intent. Aim 1 develops and tests the novel algorithm in a cohort of abled-
bodied individuals to evaluate the real-time feasibility and utility of closed-loop stimulus selection. Aim 2 will
test the closed-loop stimulus selection algorithm in a cohort of individuals with ALS to assess the performance
of the algorithm in target BCI end users. Goals of this Supplement. There is a current unmet need for large,
diverse BCI datasets that include target BCI end users for BCI algorithm development, particularly with the
popularity of data hungry deep learning models. Based on NIH-supported research for 10+ years, we have
acquired a large amount of single- and multi-session data from P300 speller studies with abled-bodied
participants and participants with ALS using different stimulus presentation paradigms. Guided by FAIR
principles, in this supplement: (1) we will perform data curation, data cleaning and data engineering to develop
a cross-platform readable P300 speller dataset with common data and metadata elements and make this
dataset publicly available; and we will demonstrate the usability of this dataset in (2) an AI/ML application
focused on developing robust data representations to mitigate the negative effect of variabilities in EEG data
on AI/ML algorithms; and (3) in student research programs focused on skill development in data science and
AI/ML. A large, inclusive and accessible BCI dataset will have significant impact in the BCI community and the
broader AI/ML community, as it will support research to develop and compare novel data representations,
stimulus paradigms and neural signal decoding algorithms towards establishing BCIs as viable AAC devices.
摘要
这一行政补充是为了回应特别利益通知,以改善人工
智能和机器学习(AI/ML)-NIH支持的sata的就绪性(NOT-OD-21-094)。总结
家长奖。增强和替代性通信(AAC)系统由以下人员使用:
沟通和运动障碍,如肌萎缩性侧索硬化症(ALS),沟通和
与环境互动。存在由访问方法控制的常规AAC设备
例如触摸、切换、头部跟踪和眼睛注视;然而,这些访问方法变得困难或
当持续的肌肉控制或随意运动控制丧失时,不可能使用。有脑机
脑机接口(BCI)通信系统,如P300拼写器,使用感官刺激来引出和
然后检测脑电图(EEG)数据中的感觉神经反应。然而,与
刺激驱动的BCI是次优的,这是由于依赖于固有的噪声EEG数据和高度可变的神经元
BCI控制的响应。BCI通信速率可以通过利用
实时EEG数据,以优化BCI系统参数,从而在以下条件下最大限度地提高BCI性能
不确定性的条件。这项工作研究了一种新的闭环刺激选择算法,
P300拼写者的刺激呈现时间表基于所测量的EEG数据和
BCI系统对用户意图的信念。目的1开发和测试新的算法在一个队列的残疾人-
身体的个人来评估闭环刺激选择的实时可行性和实用性。目标2将
在患有ALS的个体的队列中测试闭环刺激选择算法以评估性能
目标BCI终端用户的算法。本补充的目的。目前,对大型、
不同的BCI数据集,包括BCI算法开发的目标BCI最终用户,特别是
数据饥渴型深度学习模型的流行。基于NIH支持的10多年研究,我们
从P300拼写研究中获得了大量的单次和多次数据,
参与者和ALS参与者使用不同的刺激呈现范式。以公平为导向
原则,在本补充:(1)我们将执行数据策展,数据清洗和数据工程,以开发
具有通用数据和元数据元素的跨平台可读P300拼写器数据集,
公开可用的数据集;我们将在(2)AI/ML应用程序中演示此数据集的可用性
专注于开发强大的数据表示,以减轻EEG数据中可变性的负面影响
人工智能/机器学习算法;以及(3)专注于数据科学技能发展的学生研究项目,
大赦国际/ML。一个大型的、包容性的、可访问的BCI数据集将对BCI社区和整个世界产生重大影响。
更广泛的AI/ML社区,因为它将支持开发和比较新数据表示的研究,
刺激范例和神经信号解码算法,以建立BCI作为可行的AAC设备。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication.
用于脑机通信接口的语言模型引导分类器适应。
- DOI:10.1109/smc53654.2022.9945561
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen,XinlinJ;Collins,LeslieM;Mainsah,BoylaO
- 通讯作者:Mainsah,BoylaO
Mitigating the Impact of Psychophysical Effects During Adaptive Stimulus Selection in the P300 Speller Brain-Computer Interface.
- DOI:10.1109/embc46164.2021.9630048
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Chen XJ;Collins LM;Mainsah BO
- 通讯作者:Mainsah BO
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boyla Mainsah其他文献
Boyla Mainsah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boyla Mainsah', 18)}}的其他基金
Closed-Loop Stimulus Optimization to Increase Communication Efficiency in Brain-Computer Interfaces
闭环刺激优化可提高脑机接口的通信效率
- 批准号:
10321654 - 财政年份:2020
- 资助金额:
$ 26.66万 - 项目类别:
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 26.66万 - 项目类别:














{{item.name}}会员




