Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
基本信息
- 批准号:10408734
- 负责人:
- 金额:$ 23.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AnimalsArteriesBiological ProcessBlood VesselsBrainBrain HypoxiaCandidate Disease GeneCell CommunicationCell LineageCell NucleusCellsCerebral PalsyCerebrovascular systemChronicDataDevelopmentEmbryoEndotheliumFunctional disorderGene ExpressionGene Expression ProfileGenesHumanHypoxiaIn SituInfantInjuryIntellectual functioning disabilityInterneuronsLigandsLightMapsMediatingMolecularMorphologyMotor NeuronsMusNatureNeonatalNervous System TraumaNeuronsOligodendrogliaPathway interactionsPositioning AttributePremature BirthProcessRegulationReportingRodentRoleScienceSpecific qualifier valueSpinalTelencephalonTestingTherapeutic InterventionTimeUp-RegulationVascular Endothelial Growth FactorsVascularizationangiogenesisarteriolecell fate specificationcell growth regulationcell typehypoxia neonatoruminsightmigrationmyelinationneonatal brainneonatal humanneonatal hypoxic-ischemic brain injuryneonatal injuryneonateneural circuitneurogeneticsnovelnovel markeroligodendrocyte lineageoligodendrocyte precursorprogramsresiliencescaffoldtherapeutic developmenttranscriptome sequencingtranscriptomicswhite matter
项目摘要
Project 2 Abstract
Circuit formation in developing human brain involves sequential steps of: (i) cell fate specification, (ii) proliferation
and regulation of precursor pool size, and (iii) migration of neural cells to their appropriate position to integrate
into local circuits. Young interneurons (IN) and oligodendrocyte precursors (OPCs) persist as immature yet
committed lineage cells for a protracted period of time during development, undergoing extensive migration and
late differentiation before integration into/and myelination of neural circuits in human developing brain. This
relatively long developmental time course means that they may be more vulnerable to neonatal injury. Our
findings in the prior cycle of this program highlighted novel stromal interactions of OPCs and IN with blood
vessels during development. We identified that OPCs use vasculature as a physical scaffold for migration in the
developing CNS (Tsai Science 2016 PMC5472053), that OPCs drive white matter angiogenesis in mouse brain
(Yuen Cell 2014 PMC4149873), and that migrating clusters of interneurons associate with the vasculature in the
human brain (Paredes Science 2016 PMC5436574). However, very little is understood about the cellular and
molecular mechanisms that underlie human OPC induced angiogenesis and IN perivascular migration, a
phenomenon unique to human brain development. What are the cellular mechanisms that underlie angiogenesis
directed by OL lineage in human brain? And how does the establishment of a vascular scaffold subsequently
mediate and regulate IN sub-type migration? This project seeks to understand mechanisms underlying these
processes in human neonatal brain. We will 1) evaluate factors involved in OPC interaction with endothelial tip
cells as well as the morphological interaction, identify candidate angiogenic pathways and novel tip cell markers
in human brain, and investigate dysfunction of OPC-tip cell interactions in human neonatal hypoxic injury. We
will 2) determine a functional role for OPC-encoded Wnt and VEGF ligands in orchestrating endothelial tip cell
angiogenesis and in resilience to hypoxic injury, and we will 3) identify the transcriptomic signature of vessel-
associated migrating IN in human neonatal brain, and determine whether diversity of vessel associated versus
non-vessel associated IN migration is a reflection on their developmental origin. Understanding the cellular
mechanisms mediating OPC-mediated angiogenesis and IN vessel-associated migration in human brain will not
only elucidate fundamental biological processes, but will provide insight into how dysregulation could occur in
preterm birth and term hypoxia and provide perspective for the planning for therapeutic interventions.
项目2
发育中的人脑回路形成涉及以下顺序步骤:(i)细胞命运特化,(ii)增殖
和调节前体池的大小,以及(iii)神经细胞迁移到其适当的位置以整合
进入本地电路。年轻的中间神经元(IN)和少突胶质细胞前体(OPCs)仍然不成熟,
定型谱系细胞在发育过程中持续很长一段时间,经历广泛的迁移,
在人类发育中的大脑中,在整合到神经回路中之前的晚期分化和髓鞘形成。这
相对较长的发育时间过程意味着他们可能更容易受到新生儿损伤。我们
在该项目的前一个周期中的发现强调了OPCs和IN与血液的新型基质相互作用
船在发展中。我们发现,OPCs使用血管作为迁移的物理支架,
开发CNS(Tsai Science 2016 PMC 5472053),OPC驱动小鼠脑中的白色物质血管生成
(Yuen Cell 2014 PMC 4149873),并且中间神经元的迁移簇与神经元中的脉管系统相关。
人脑(Paredes Science 2016 PMC 5436574)。然而,很少有人了解细胞和
人OPC诱导血管生成和IN血管周围迁移的分子机制,
人类大脑发育所特有的现象。血管生成的细胞机制是什么
由人类大脑中的OL谱系指导?接下来血管支架的建立
介导和调节IN亚型迁移?该项目旨在了解这些机制的基础上,
人类新生儿大脑的过程。我们将1)评估OPC与内皮尖端相互作用的相关因素
细胞以及形态学的相互作用,确定候选血管生成途径和新的尖端细胞标志物
在人脑中,并研究在人类新生儿缺氧损伤中OPC-尖端细胞相互作用的功能障碍。我们
将2)确定OPC编码的Wnt和VEGF配体在协调内皮尖端细胞中的功能作用,
血管生成和对缺氧损伤的恢复,我们将3)确定血管的转录组学特征,
相关的迁移性IN在人类新生儿脑,并确定是否血管相关的多样性与
非血管相关的IN迁移是其发育起源的反映。了解细胞
在人脑中,介导OPC介导的血管生成和IN血管相关迁移的机制将不会
它只阐明了基本的生物学过程,但将提供洞察如何失调可能发生在
早产和足月缺氧,并提供治疗干预计划的前景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Philip James Fancy其他文献
Stephen Philip James Fancy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Philip James Fancy', 18)}}的其他基金
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Mechanisms of oligodendroglial ciliary function in white matter injury repair
少突胶质细胞纤毛功能在白质损伤修复中的机制
- 批准号:
10659990 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Oligodendroglial Intrinsic Ring Finger Protein family members are injury specific, but not developmental, regulators of oligodendrocyte maturation
少突胶质细胞固有环指蛋白家族成员是损伤特异性的,但不是发育性的少突胶质细胞成熟的调节因子
- 批准号:
10239257 - 财政年份:2020
- 资助金额:
$ 23.32万 - 项目类别:
Vasculature provides the substrate for oligodendrocyte progenitor migration in development and disease
脉管系统为少突胶质细胞祖细胞在发育和疾病中迁移提供基质
- 批准号:
9309564 - 财政年份:2017
- 资助金额:
$ 23.32万 - 项目类别:
Vasculature provides the substrate for oligodendrocyte progenitor migration in development and disease
脉管系统为少突胶质细胞祖细胞在发育和疾病中迁移提供基质
- 批准号:
10115137 - 财政年份:2017
- 资助金额:
$ 23.32万 - 项目类别:
Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
- 批准号:
10627968 - 财政年份:2014
- 资助金额:
$ 23.32万 - 项目类别:
Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
- 批准号:
10221062 - 财政年份:2014
- 资助金额:
$ 23.32万 - 项目类别:
Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
- 批准号:
10023629 - 财政年份:
- 资助金额:
$ 23.32万 - 项目类别:
相似海外基金
Analysis of spatiotemporal involvement of retinoic acid in pharyngeal arch arteries
视黄酸对咽弓动脉的时空影响分析
- 批准号:
22KJ2601 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular identification of the oxygen sensor(s) in the fetal ductus arteriosus and pulmonary artery: an integrated multiomic comparison of mitochondria in vital fetal arteries with opposing oxygen responses
胎儿动脉导管和肺动脉中氧传感器的分子识别:对胎儿重要动脉中具有相反氧反应的线粒体进行综合多组学比较
- 批准号:
462691 - 财政年份:2022
- 资助金额:
$ 23.32万 - 项目类别:
Operating Grants
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
RGPIN-2021-02563 - 财政年份:2022
- 资助金额:
$ 23.32万 - 项目类别:
Discovery Grants Program - Individual
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10337722 - 财政年份:2022
- 资助金额:
$ 23.32万 - 项目类别:
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10590708 - 财政年份:2022
- 资助金额:
$ 23.32万 - 项目类别:
Pregnenolone constricts cerebral vascular arteries through the direct modulation of BK ion channels
孕烯醇酮通过直接调节 BK 离子通道收缩脑血管动脉
- 批准号:
10441131 - 财政年份:2021
- 资助金额:
$ 23.32万 - 项目类别:
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
DGECR-2021-00028 - 财政年份:2021
- 资助金额:
$ 23.32万 - 项目类别:
Discovery Launch Supplement
Association of brain temperature increase and cerebrospinal fluid dynamics in chronic brain ischemia due to main trunk occlusion of cerebral arteries
脑动脉主干闭塞所致慢性脑缺血脑温度升高与脑脊液动力学的关系
- 批准号:
21K09108 - 财政年份:2021
- 资助金额:
$ 23.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10195510 - 财政年份:2021
- 资助金额:
$ 23.32万 - 项目类别:
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10405492 - 财政年份:2021
- 资助金额:
$ 23.32万 - 项目类别: