CRCNS: Neural Basis of Planning

CRCNS:规划的神经基础

基本信息

  • 批准号:
    10410402
  • 负责人:
  • 金额:
    $ 36.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-02 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Humans and other animals can choose their actions using multiple learning algorithms and decision­ making strategies. For example, habitual behaviors adapted to a stable environment can be selected using so-called model-free reinforcement learning algorithms, in which the value of each action is incrementally updated according to the amount of unexpected reward. The underlying neural mechanisms for this type of reinforcement learning have been intensively studied. By contrast, how the brain utilizes the animal's knowledge of its environment to plan sequential actions using a model-based reinforcement learning algorithm remains unexplored. In this application, PIs with complementary expertise will investigate how different subdivisions of the primate prefrontal cortex contribute to the evaluation and arbitration of different learning algorithms during strategic planning in primates, using a sequential game referred to as "4-in-a­ row". Previous studies have revealed that with training, humans improve their competence in this game by gradually switching away from a model-free reinforcement learning towards a model-based reinforcement learning in the form of a tree search. In the first set of experiments, we will train non-human primates to play the 4-in-a-row game against a computer opponent. We predict that the complexity of the strategic planning and the opponent's move violating the animal's expectation will be reflected in the speed of animal's action and pupil diameters. Next, we will test how the medial and lateral aspects of prefrontal cortex contribute to the evaluation and selection of different learning algorithms during strategic interaction between the animal and computer opponent. We hypothesize that the lateral prefrontal cortex is involved in computing the integrated values of alternative actions originating from multiple sources and guiding the animal's choice, whereas the medial prefrontal cortex might be more involved in monitoring and resolving the discrepancies of actions favored by different learning algorithms. The results from these experiments will expand our knowledge of the neural mechanisms for complex strategic planning and unify various approaches to study naturalistic behaviors. By taking advantage of recent advances in machine learning and decision neuroscience, proposed studies will elucidate how multiple learning algorithms are simultaneously implemented and coordinated via specific patterns of activity in the prefrontal cortex. The results from these studies will transform the behavioral and analytical paradigms used to study high-order planning and their neural underpinnings in humans and animals.
人类和其他动物可以使用多种学习算法和决策策略来选择自己的行为。例如,可以使用所谓的无模型强化学习算法来选择适应稳定环境的习惯行为,其中每个动作的价值根据意外奖励的数量逐步更新。这种强化学习的潜在神经机制已被深入研究。相比之下,大脑如何利用动物对其环境的了解,使用基于模型的强化学习算法来计划顺序动作仍有待探索。在此应用中,具有互补专业知识的 PI 将使用称为“四连胜”的顺序游戏,研究灵长类动物前额叶皮层的不同细分如何在灵长类动物的战略规划过程中评估和仲裁不同的学习算法。先前的研究表明,通过训练,人类通过逐渐从无模型强化学习转向树搜索形式的基于模型的强化学习来提高他们在这个游戏中的能力。在第一组实验中,我们将训练非人类灵长类动物与计算机对手玩四连胜游戏。我们预测,战略规划的复杂性和对手违反动物预期的举动将反映在动物行动的速度和瞳孔直径上。接下来,我们将测试前额叶皮层的内侧和外侧方面如何在动物和计算机对手之间的策略交互过程中有助于评估和选择不同的学习算法。我们假设外侧前额叶皮层参与计算来自多个来源的替代动作的综合值并指导动物的选择,而内侧前额叶皮层可能更多地参与监测和解决不同学习算法所青睐的动作的差异。这些实验的结果将扩展我们对复杂战略规划的神经机制的了解,并统一研究自然行为的各种方法。通过利用机器学习和决策神经科学的最新进展,拟议的研究将阐明如何通过前额皮质的特定活动模式同时实施和协调多种学习算法。这些研究的结果将改变用于研究人类和动物高阶规划及其神经基础的行为和分析范式。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Schema-based predictive eye movements support sequential memory encoding.
  • DOI:
    10.7554/elife.82599
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Huang J;Velarde I;Ma WJ;Baldassano C
  • 通讯作者:
    Baldassano C
Unbiased and efficient log-likelihood estimation with inverse binomial sampling.
  • DOI:
    10.1371/journal.pcbi.1008483
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    van Opheusden B;Acerbi L;Ma WJ
  • 通讯作者:
    Ma WJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAEYEOL LEE其他文献

DAEYEOL LEE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAEYEOL LEE', 18)}}的其他基金

CRCNS: Neural Basis of Inductive Bias
CRCNS:归纳偏差的神经基础
  • 批准号:
    10916854
  • 财政年份:
    2022
  • 资助金额:
    $ 36.9万
  • 项目类别:
CRCNS: Neural Basis of Inductive Bias
CRCNS:归纳偏差的神经基础
  • 批准号:
    10619184
  • 财政年份:
    2022
  • 资助金额:
    $ 36.9万
  • 项目类别:
Neural Basis of temporal decision making
时间决策的神经基础
  • 批准号:
    9922454
  • 财政年份:
    2019
  • 资助金额:
    $ 36.9万
  • 项目类别:
CRCNS: Neural Basis of Planning
CRCNS:规划的神经基础
  • 批准号:
    9762221
  • 财政年份:
    2018
  • 资助金额:
    $ 36.9万
  • 项目类别:
Neural basis of temporal decision making
时间决策的神经基础
  • 批准号:
    9194428
  • 财政年份:
    2015
  • 资助金额:
    $ 36.9万
  • 项目类别:
Neural basis of temporal decision making
时间决策的神经基础
  • 批准号:
    9007934
  • 财政年份:
    2015
  • 资助金额:
    $ 36.9万
  • 项目类别:
Learning and Selection in the Basal Ganglia
基底神经节的学习和选择
  • 批准号:
    8753644
  • 财政年份:
    2014
  • 资助金额:
    $ 36.9万
  • 项目类别:
Decision Making and Orbitofrontal Cortex
决策和眶额皮质
  • 批准号:
    8261937
  • 财政年份:
    2010
  • 资助金额:
    $ 36.9万
  • 项目类别:
Decision Making and Orbitofrontal Cortex
决策和眶额皮质
  • 批准号:
    8459507
  • 财政年份:
    2010
  • 资助金额:
    $ 36.9万
  • 项目类别:
Decision Making and Orbitofrontal Cortex
决策和眶额皮质
  • 批准号:
    8043667
  • 财政年份:
    2010
  • 资助金额:
    $ 36.9万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 36.9万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了