CRCNS: Neural Basis of Inductive Bias
CRCNS:归纳偏差的神经基础
基本信息
- 批准号:10619184
- 负责人:
- 金额:$ 43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-12 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimalsArchitectureArtificial IntelligenceBehaviorBehavioralBiologicalBrainCategoriesChoice BehaviorCodeComputer ModelsCorpus striatum structureDataData SetDorsalEvolutionGoalsHumanImpairmentIntelligenceLearningLightLinkMachine LearningMeasuresModelingMonkeysNeural Network SimulationNeurobiologyNeuronal DysfunctionNeuronsNeurosciencesPopulationPrefrontal CortexPrimatesProcessPropertyPsychological reinforcementRecurrenceResearchSchizophreniaStimulusTask PerformancesTestingTrainingadaptive learningartificial neural networkautism spectrum disorderbasebehavior predictioncaudate nucleuscomputational neurosciencedesignexperienceexperimental studyfeedforward neural networkflexibilityinsightkernel methodslearned behaviorneural networkneuropsychiatric disordernonhuman primatenovelrecurrent neural networkrelating to nervous systemstatisticssuccesstheoriestranslational applications
项目摘要
A hallmark of biological intelligence is the ability to learn from a remarkably small set of experiences to
select appropriate behaviors in novel contexts. This ability arises from inductive bias, referring to the
assumptions used in generalizing prior observations to novel data. In machine learning, inductive bias is
essential for efficient learning from a small number of examples as animals frequently do. In
neuroscience, inductive bias has been mostly considered as shaped by evolution to produce an innate
inductive bias. Although an agent’s inductive bias should be adaptive to changing task demands, how
brains develop inductive bias, use it to guide learning, and adapt it to task statistics, remain poorly
understood. The overall goal of this project is to study the neural and computational bases of inductive
bias adaptation by training non-human primates on a novel learning task, characterizing choice behavior
and neuronal activity, and developing computational models of learning in neural networks. Our
theoretical framework of neural kernel learning makes precise predictions for behavior and neural activity
that will be experimentally tested in the proposed studies. We will characterize behavior in a newly
designed “crosstalk” task, which is designed to characterize inductive bias and to drive a subject’s
adaptation through well-defined and variable task statistics (Aim 1). In this task, the subject learns through
experience to categorize stimuli composed of multiple features. Within a block of trials, certain features
are differentially informative of the category. Next, we will record simultaneous spiking activity from
neurons in dorsolateral prefrontal cortex and the dorsal striatum during task performance (Aim 2). In
parallel, we will develop and refine algorithmic and artificial neural network models of adaptive learning
(Aim 3) to generate testable predictions for behavior and neural activity. Results from these studies will
impact paradigms used to study the computational and neural bases of learning and generalization in
humans and animals.
生物智能的一个标志是能够从非常少的经验中学习
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAEYEOL LEE其他文献
DAEYEOL LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAEYEOL LEE', 18)}}的其他基金
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 43万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




