High-Dimensional Regression for Data Integration
数据集成的高维回归
基本信息
- 批准号:10411239
- 负责人:
- 金额:$ 27.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalCategoriesChromosome MappingColorectal CancerComplexDNADataData AnalyticsData SetDiagnosticDiseaseDisease OutcomeElementsEnhancersEvaluationEventGene ExpressionGene Expression ProfilingGenesGenetic TranscriptionGenomicsGoalsJointsKnowledgeLinkMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of prostateMediatingMethodsModelingMolecularOutcomePathway interactionsPerformancePlayPopulationRegulatory ElementRisk FactorsRoleScanningStatistical MethodsTimeTranscriptional RegulationUntranslated RNAVariantWorkcomputerized toolsdata integrationdiagnostic signaturediagnostic toolepigenomicsfeature selectionflexibilitygenome wide association studyhigh dimensionalityimprovedinsightnovelpredictive modelingprognosticprognostic signatureprognostic tooltooltraittranscriptomics
项目摘要
Project 1: High-Dimensional Regression for Data Integration
Abstract
Associated with high-dimensional omic (e.g. genomic, transcriptomic, epigenomic) features there is a
rich set of functional and regulatory annotations, pathway information, and disease-specific knowledge
from previous studies that is routinely used to interpret analyses of omic data. In this project, we
propose to develop integrative regression methods capable of incorporating this array of external
information a priori, rather than post hoc, to improve prediction performance, selection of predictive
and associated features, and to gain insight into potential biological mechanisms in studies with high-
dimensional omic data. In our first Specific Aim we propose a general high-dimensional mixed
modelling framework for integrating meta-features (e.g. functional annotations, pathways) into omic
studies, with the flexibility to handle quantitative, categorical, and time-to-event outcomes, as well as
the ability to accommodate correlated data through the inclusion of random effects. Our proposed
approach brings together mixed modeling, high-dimensional regularized regression, and an empirical
Bayes strategy that makes the direct estimation of tuning penalty parameters from the data analytically
and computationally tractable. The proposed integrative models can be deployed in ‘predictive mode’
to develop diagnostic and prognostic signatures, or in ‘discovery mode’ to identify omic features
associated with disease outcomes. We also propose an accompanying set of tools for inference and
model interpretation. Our second Specific Aim focuses on integrative high-dimensional regression
models for transcription-wide association studies (TWAS). We propose to leverage recent advances
linking enhancers and other DNA regulatory elements and their proximal target genes to improve the
prediction of genetically regulated gene expression with the goal of boosting the power and localization
ability of TWAS. In our third Specific Aim, we focus on applications of the methods in Aims 1 and 2 to
several cancer datasets.
项目1:用于数据集成的高维回归
摘要
与高维组学(例如基因组学、转录组学、表观基因组学)特征相关,存在一种
丰富的功能和调控注释、途径信息和疾病特异性知识
从以前的研究,这是常规用于解释分析的组学数据。本课题
我建议开发能够将这一系列外部因素纳入的综合回归方法,
信息先验,而不是事后,以提高预测性能,选择预测
和相关特征,并深入了解高血压研究中的潜在生物学机制,
三维组学数据。在我们的第一个具体目标,我们提出了一个一般的高维混合
将元特征(例如功能注释、途径)整合到组学中的建模框架
研究,可灵活处理定量、分类和事件发生时间结局,以及
通过包含随机效应来适应相关数据的能力。我们提出的
这种方法将混合建模、高维正则化回归和经验回归结合在一起,
贝叶斯策略,从分析数据中直接估计调谐惩罚参数
并且易于计算。建议的综合模型可以部署在'预测模式'
开发诊断和预后特征,或以“发现模式”识别组学特征
与疾病结果相关。我们还提出了一套配套的推理工具,
模型解释我们的第二个具体目标集中在集成高维回归
全转录关联研究(TWAS)。我们建议利用最新的进展
连接增强子和其他DNA调控元件及其近端靶基因,以改善
预测基因调控的基因表达,目的是提高功率和定位
TWAS的能力。在我们的第三个具体目标中,我们着重于目标1和2中的方法的应用,
几个癌症数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Pablo Lewinger其他文献
Juan Pablo Lewinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Pablo Lewinger', 18)}}的其他基金
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10368449 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10590701 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
LA’s Biostatistics Education Summer Training Program (LA’s BEST @USC)
洛杉矶生物统计教育暑期培训计划(洛杉矶 BEST @USC)
- 批准号:
9894852 - 财政年份:2019
- 资助金额:
$ 27.58万 - 项目类别:
Integrated Analysis for Genetic Association and Prediction
遗传关联与预测的综合分析
- 批准号:
9768384 - 财政年份:
- 资助金额:
$ 27.58万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant














{{item.name}}会员




